家庭物品图像分割系统源码&数据集分享
[yolov8-seg-C2f-Faster-EMA&yolov8-seg-C2f-DCNV2等50+全套改进创新点发刊_一键训练教程_Web前端展示]
1.研究背景与意义
项目参考ILSVRC ImageNet Large Scale Visual Recognition Challenge
项目来源AAAI Global Al lnnovation Contest
研究背景与意义
随着智能家居技术的迅速发展,家庭物品的自动识别与管理成为了一个重要的研究领域。家庭环境中存在着多种多样的物品,如何有效地对这些物品进行识别、分类和分割,进而实现智能化管理,已成为提升家庭生活质量的重要课题。近年来,深度学习技术的进步为物体检测与分割提供了新的解决方案,尤其是YOLO(You Only Look Once)系列模型的出现,使得实时物体检测成为可能。YOLOv8作为该系列的最新版本,其在精度和速度上的显著提升,为家庭物品的图像分割提供了强有力的技术支持。
本研究基于改进YOLOv8模型,旨在构建一个高效的家庭物品图像分割系统。该系统的核心在于利用YCB RoboCup@Home 24数据集,该数据集包含了18000张图像,涵盖41种不同类别的家庭物品,如水果、饮料、餐具等。这些物品在家庭日常生活中频繁出现,具有较高的实用价值。通过对这些物品进行实例分割,不仅可以实现对物品的精确识别,还能够为后续的智能家居应用提供基础数据支持。
在实际应用中,家庭物品的图像分割系统可以广泛应用于智能助手、自动化家居管理、物品追踪等场景。例如,智能助手可以通过识别家庭物品,帮助用户快速找到所需物品,提升生活便利性;而在自动化家居管理中,系统可以实时监测家庭物品的存量,提醒用户进行补充,避免因物品短缺而影响日常生活。此外,物品的精确分割还可以为家庭安全监控提供数据支持,识别潜在的安全隐患。
然而,现有的物品识别系统在处理复杂家庭环境时,仍面临诸多挑战,如光照变化、物品遮挡、背景干扰等问题。因此,改进YOLOv8模型,提升其在家庭环境下的图像分割能力,具有重要的理论意义和实际应用价值。本研究将通过对YOLOv8模型的改进,结合YCB RoboCup@Home 24数据集,探索更为高效的图像分割算法,以期在复杂环境中实现更高的识别精度和更快的处理速度。
综上所述,基于改进YOLOv8的家庭物品图像分割系统的研究,不仅能够推动深度学习在家庭智能化领域的应用,还将为相关技术的发展提供新的思路与方法。通过本研究的实施,期望能够为家庭物品的智能管理提供切实可行的解决方案,提升家庭生活的智能化水平,最终实现更为便捷和高效的家庭管理模式。
2.图片演示
注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)
(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。
(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。
(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。
(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。
另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。
3.视频演示
4.数据集信息展示
4.1 本项目数据集详细数据(类别数&类别名)
nc: 40
names: [‘Apple’, ‘Banana’, ‘Baseball’, ‘Bowl’, ‘Cheezit’, ‘Chocolate_jello’, ‘Cleanser’, ‘Coffee_grounds’, ‘Cola’, ‘Cornflakes’, ‘Cup’, ‘Dice’, ‘Dishwasher_tab’, ‘Fork’, ‘Iced_tea’, ‘Juice_pack’, ‘Knife’, ‘Lemon’, ‘Milk’, ‘Mustard’, ‘Orange’, ‘Orange_juice’, ‘Peach’, ‘Pear’, ‘Plate’, ‘Plum’, ‘Pringles’, ‘Red_wine’, ‘Rubiks_cube’, ‘Soccer_ball’, ‘Spam’, ‘Sponge’, ‘Spoon’, ‘Strawberry’, ‘Strawberry_jello’, ‘Sugar’, ‘Tennis_ball’, ‘Tomato_soup’, ‘Tropical_juice’, ‘Tuna’]
4.2 本项目数据集信息介绍
数据集信息展示
在本研究中,我们采用了“YCB RoboCup@Home 24”数据集,以训练和改进YOLOv8-seg模型,旨在实现家庭物品的高效图像分割。该数据集专门设计用于机器人领域,涵盖了丰富的家庭物品类别,能够为我们的模型提供多样化的训练样本,从而提高其在实际应用中的准确性和鲁棒性。
“YCB RoboCup@Home 24”数据集包含40个不同的类别,具体类别包括:苹果、香蕉、棒球、碗、芝士饼干、巧克力果冻、清洁剂、咖啡渣、可乐、玉米片、杯子、骰子、洗碗机洗涤片、叉子、冰茶、果汁包装、刀、柠檬、牛奶、芥末、橙子、橙汁、桃子、梨、盘子、李子、普林、红酒、魔方、足球、午餐肉、海绵、勺子、草莓、草莓果冻、糖、网球、番茄汤和热带果汁等。这些类别涵盖了家庭日常生活中常见的物品,能够为图像分割任务提供丰富的上下文信息。
在数据集的构建过程中,研究者们精心挑选了这些物品,确保每个类别都具有代表性和多样性。这不仅有助于模型学习到每种物品的特征,还能提高其在不同环境和条件下的适应能力。例如,水果类(如苹果、香蕉、橙子等)与饮料类(如可乐、果汁包装等)在形状、颜色和纹理上具有显著差异,而清洁剂、洗碗机洗涤片等则在包装和使用场景上有其独特性。通过这些多样化的类别,YOLOv8-seg模型能够更好地理解和分割不同类型的物品。
此外,数据集中的图像样本不仅数量庞大,而且在拍摄条件、角度和背景上也具有很大的变化。这种多样性使得模型在训练过程中能够接触到不同的视觉信息,从而增强其对新场景的泛化能力。例如,模型在识别一个放置在厨房台面上的碗时,可能会遇到不同的光照条件和背景杂物,这就要求模型具备较强的分割能力,以准确识别出碗的轮廓并与其他物品区分开来。
通过使用“YCB RoboCup@Home 24”数据集,我们期望能够显著提升YOLOv8-seg在家庭物品图像分割任务中的表现。数据集的丰富性和多样性为模型的训练提供了坚实的基础,使其能够在实际应用中更好地服务于家庭机器人等智能设备的开发。最终,我们希望通过这一研究,推动家庭物品识别和分割技术的发展,为未来的智能家居系统奠定基础。
5.全套项目环境部署视频教程(零基础手把手教学)
5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)
6.手把手YOLOV8-seg训练视频教程(零基础小白有手就能学会)
6.1 手把手YOLOV8-seg训练视频教程(零基础小白有手就能学会)
按照上面的训练视频教程链接加载项目提供的数据集,运行train.py即可开始训练
Epoch gpu_mem box obj cls labels img_size
1/200 0G 0.01576 0.01955 0.007536 22 1280: 100%|██████████| 849/849 [14:42<00:00, 1.04s/it]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:14<00:00, 2.87it/s]
all 3395 17314 0.994 0.957 0.0957 0.0843
Epoch gpu_mem box obj cls labels img_size
2/200 0G 0.01578 0.01923 0.007006 22 1280: 100%|██████████| 849/849 [14:44<00:00, 1.04s/it]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:12<00:00, 2.95it/s]
all 3395 17314 0.996 0.956 0.0957 0.0845
Epoch gpu_mem box obj cls labels img_size
3/200 0G 0.01561 0.0191 0.006895 27 1280: 100%|██████████| 849/849 [10:56<00:00, 1.29it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|███████ | 187/213 [00:52<00:00, 4.04it/s]
all 3395 17314 0.996 0.957 0.0957 0.0845
7.50+种全套YOLOV8-seg创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)
7.1 50+种全套YOLOV8-seg创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)
8.YOLOV8-seg图像分割算法原理
原始YOLOv8-seg算法原理
YOLOv8-seg算法是YOLO系列中的最新进展,旨在通过结合目标检测与实例分割的能力,进一步提升计算机视觉任务的性能。作为一款一阶段目标检测算法,YOLOv8-seg在YOLOv8的基础上,融入了分割任务的特性,使得模型不仅能够准确地识别目标的位置和类别,还能精确地分割出目标的轮廓。这一创新使得YOLOv8-seg在处理复杂场景时,能够提供更为细致和准确的结果,尤其是在需要高分辨率和小目标检测的应用中。
YOLOv8-seg的核心原理在于其网络结构的设计。与之前的YOLO版本类似,YOLOv8-seg的网络结构同样由主干网络(backbone)、特征增强网络(neck)和检测头(head)三部分组成。主干网络采用了CSP(跨阶段局部网络)思想,通过深度学习提取图像特征,增强了模型的特征表达能力。在特征增强网络方面,YOLOv8-seg引入了PAN-FPN(路径聚合网络-特征金字塔网络)的理念,旨在有效地融合不同尺度的特征信息,以便更好地处理多样化的目标。
在检测头部分,YOLOv8-seg的创新尤为显著。传统的YOLO模型使用耦合头,而YOLOv8-seg则采用了解耦头的设计,将分类和回归任务分开处理。这种解耦设计使得模型在处理复杂场景时,能够更专注于每个任务,从而提高了定位精度和分类准确性。此外,YOLOv8-seg还采用了Anchor-free目标检测方法,摒弃了传统的锚点框概念,直接通过回归方式预测目标的位置和大小。这一变化不仅简化了模型的设计,还提高了检测速度和准确性,使得YOLOv8-seg能够更快速地聚焦于目标的实际边界。
YOLOv8-seg的另一个重要特点是其轻量化设计。相比于之前的YOLO版本,YOLOv8-seg在模型权重文件的大小上进行了优化,使其能够在各种嵌入式设备上运行。这一轻量化特性不仅提升了模型的部署灵活性,还使得实时检测成为可能,满足了工业和智能监控等领域对高效能和实时性的需求。
在损失函数的设计上,YOLOv8-seg也进行了创新,结合了目标检测和实例分割的特点,确保模型在训练过程中能够有效地学习到目标的边界信息。这种损失函数的优化使得模型在分割任务中表现出色,能够精确地识别出目标的轮廓,尤其是在复杂背景下,依然能够保持高准确率。
通过对YOLOv8-seg的整体分析,可以看出其在多个方面的创新和改进,使其成为计算机视觉领域中一款强大的工具。无论是在实时目标检测还是在实例分割任务中,YOLOv8-seg都展现出了卓越的性能。其轻量化的设计、解耦的检测头、Anchor-free的目标检测方法以及优化的损失函数,使得YOLOv8-seg不仅适用于学术研究,也为实际应用提供了强有力的支持。
综上所述,YOLOv8-seg算法通过一系列的技术创新和设计优化,成功地将目标检测与实例分割相结合,推动了计算机视觉技术的发展。随着YOLOv8-seg的不断应用与推广,未来在自动驾驶、智能监控、医疗影像分析等领域,必将发挥出更大的潜力和价值。
9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)
图9.1.系统支持检测结果表格显示
图9.2.系统支持置信度和IOU阈值手动调节
图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)
图9.4.系统支持摄像头实时识别
图9.5.系统支持图片识别
图9.6.系统支持视频识别
图9.7.系统支持识别结果文件自动保存
图9.8.系统支持Excel导出检测结果数据
10.50+种全套YOLOV8-seg创新点原理讲解(非科班也可以轻松写刊发刊,V11版本正在科研待更新)
10.1 由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:
10.1 50+种全套YOLOV8-seg创新点原理讲解链接
10.2 部分改进模块原理讲解(完整的改进原理见上图和技术博客链接)【如果此小节的图加载失败可以通过CSDN或者Github搜索该博客的标题访问原始博客,原始博客图片显示正常】
YOLOv8简介
由上图可以看出,C2中每个BottlNeck的输入Tensor的通道数channel都只是上一级的0.5倍,因此计算量明显降低。从另一方面讲,梯度流的增加,t也能够明显提升收敛速度和收敛效果。
C2i模块首先以输入tensor(n.c.h.w)经过Conv1层进行split拆分,分成两部分(n,0.5c,h,w),一部分直接经过n个Bottlenck,另一部分经过每一操作层后都会以(n.0.5c,h,w)的尺寸进行Shortcut,最后通过Conv2层卷积输出。也就是对应n+2的Shortcut(第一层Conv1的分支tensor和split后的tensor为2+n个bottenlenneck)。
Neck
YOLOv8的Neck采用了PANet结构,如下图所示。
Backbone最后SPPF模块(Layer9)之后H、W经过32倍下采样,对应地Layer4经过8倍下采样,Layer6经过16倍下采样。输入图片分辨率为640640,得到Layer4、Layer6、Layer9的分辨率分别为8080、4040和2020。
Layer4、Layer6、Layer9作为PANet结构的输入,经过上采样,通道融合,最终将PANet的三个输出分支送入到Detect head中进行Loss的计算或结果解算。
与FPN(单向,自上而下)不同的是,PANet是一个双向通路网络,引入了自下向上的路径,使得底层信息更容易传递到顶层。
Head
Head部分相比Yolov5改动较大,直接将耦合头改为类似Yolo的解耦头结构(Decoupled-Head),将回归分支和预测分支分离,并针对回归分支使用了Distribution Focal Loss策略中提出的积分形式表示法。之前的目标检测网络将回归坐标作为一个确定性单值进行预测,DFL将坐标转变成一个分布。
LSKNet的架构
该博客提出的结构层级依次为:
LSK module(大核卷积序列+空间选择机制) < LSK Block (LK Selection + FFN)<LSKNet(N个LSK Block)
LSK 模块
LSK Block
LSKNet 是主干网络中的一个可重复堆叠的块(Block),每个LSK Block包括两个残差子块,即大核选择子块(Large Kernel Selection,LK Selection)和前馈网络子块(Feed-forward Network ,FFN),如图8。LK Selection子块根据需要动态地调整网络的感受野,FFN子块用于通道混合和特征细化,由一个全连接层、一个深度卷积、一个 GELU 激活和第二个全连接层组成。
LSK module(LSK 模块,图4)由一个大核卷积序列(large kernel convolutions)和一个空间核选择机制(spatial kernel selection mechanism)组成,被嵌入到了LSK Block 的 LK Selection子块中。
Large Kernel Convolutions
因为不同类型的目标对背景信息的需求不同,这就需要模型能够自适应选择不同大小的背景范围。因此,作者通过解耦出一系列具有大卷积核、且不断扩张的Depth-wise 卷积,构建了一个更大感受野的网络。
具体地,假设序列中第i个Depth-wise 卷积核的大小为 ,扩张率为 d,感受野为 ,它们满足以下关系:
卷积核大小和扩张率的增加保证了感受野能够快速增大。此外,我们设置了扩张率的上限,以保证扩张卷积不会引入特征图之间的差距。
Table2的卷积核大小可根据公式(1)和(2)计算,详见下图:
这样设计的好处有两点。首先,能够产生具有多种不同大小感受野的特征,便于后续的核选择;第二,序列解耦比简单的使用一个大型卷积核效果更好。如上图表2所示,解耦操作相对于标准的大型卷积核,有效地将低了模型的参数量。
为了从输入数据 的不同区域获取丰富的背景信息特征,可采用一系列解耦的、不用感受野的Depth-wise 卷积核:
其中,是卷积核为 、扩张率为 的Depth-wise 卷积操作。假设有个解耦的卷积核,每个卷积操作后又要经过一个的卷积层进行空间特征向量的通道融合。
之后,针对不同的目标,可基于获取的多尺度特征,通过下文中的选择机制动态选择合适的卷积核大小。
这一段的意思可以简单理解为:
把一个大的卷积核拆成了几个小的卷积核,比如一个大小为5,扩张率为1的卷积核加上一个大小为7,扩张率为3的卷积核,感受野为23,与一个大小为23,扩张率为1的卷积核的感受野是一样的。因此可用两个小的卷积核替代一个大的卷积核,同理一个大小为29的卷积核也可以用三个小的卷积代替(Table 2),这样可以有效的减少参数,且更灵活。
将输入数据依次通过这些小的卷积核(公式3),并在每个小的卷积核后面接上一个1×1的卷积进行通道融合(公式4)。
Spatial Kernel Selection
为了使模型更关注目标在空间上的重点背景信息,作者使用空间选择机制从不同尺度的大卷积核中对特征图进行空间选择。
首先,将来自于不同感受野卷积核的特征进行concate拼接,然后,应用通道级的平均池化和最大池化提取空间关系,其中, 和 是平均池化和最大池化后的空间特征描述符。为了实现不同空间描述符的信息交互,作者利用卷积层将空间池化特征进行拼接,将2个通道的池化特征转换为N个空间注意力特征图,之后,将Sigmoid激活函数应用到每一个空间注意力特征图,可获得每个解耦的大卷积核所对应的独立的空间选择掩膜,又然后,将解耦后的大卷积核序列的特征与对应的空间选择掩膜进行加权处理,并通过卷积层进行融合获得注意力特征 ,最后LSK module的输出可通过输入特征 与注意力特征 的逐元素点成获得,公式对应于结构图上的操作如下:
11.项目核心源码讲解(再也不用担心看不懂代码逻辑)
11.1 ultralytics\utils\patches.py
以下是经过精简和注释的核心代码部分:
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""对现有函数的功能进行更新和扩展的猴子补丁。"""
from pathlib import Path
import cv2
import numpy as np
import torch
# 读取图像的函数
def imread(filename: str, flags: int = cv2.IMREAD_COLOR) -> np.ndarray:
"""
从文件中读取图像。
参数:
filename (str): 要读取的文件路径。
flags (int, optional): 读取标志,默认为 cv2.IMREAD_COLOR。
返回:
np.ndarray: 读取的图像。
"""
# 使用 cv2.imdecode 从文件中读取图像
return cv2.imdecode(np.fromfile(filename, np.uint8), flags)
# 写入图像的函数
def imwrite(filename: str, img: np.ndarray, params=None) -> bool:
"""
将图像写入文件。
参数:
filename (str): 要写入的文件路径。
img (np.ndarray): 要写入的图像。
params (list of ints, optional): 额外参数,参见 OpenCV 文档。
返回:
bool: 如果文件写入成功则返回 True,否则返回 False。
"""
try:
# 使用 cv2.imencode 将图像编码并写入文件
cv2.imencode(Path(filename).suffix, img, params)[1].tofile(filename)
return True
except Exception:
return False
# 显示图像的函数
def imshow(winname: str, mat: np.ndarray):
"""
在指定窗口中显示图像。
参数:
winname (str): 窗口名称。
mat (np.ndarray): 要显示的图像。
"""
# 使用 OpenCV 的 imshow 函数显示图像
cv2.imshow(winname.encode('unicode_escape').decode(), mat)
# PyTorch 保存模型的函数
def torch_save(*args, **kwargs):
"""
使用 dill 序列化 lambda 函数,解决 pickle 无法处理的问题。
参数:
*args (tuple): 传递给 torch.save 的位置参数。
**kwargs (dict): 传递给 torch.save 的关键字参数。
"""
try:
import dill as pickle # 尝试导入 dill
except ImportError:
import pickle # 如果没有 dill,则使用 pickle
# 确保使用自定义的 pickle 模块
if 'pickle_module' not in kwargs:
kwargs['pickle_module'] = pickle
return torch.save(*args, **kwargs) # 调用原始的 torch.save
代码分析
-
imread: 该函数用于从指定路径读取图像,支持多种图像格式。使用
cv2.imdecode
来解码图像数据。 -
imwrite: 此函数将图像写入指定的文件路径。使用
cv2.imencode
将图像编码为指定格式,并写入文件。若写入失败,则返回False
。 -
imshow: 用于在窗口中显示图像。窗口名称经过编码以支持多语言字符。
-
torch_save: 该函数用于保存 PyTorch 模型,支持使用
dill
模块来序列化 lambda 函数,以解决pickle
无法处理的问题。
这个文件 ultralytics/utils/patches.py
是一个用于扩展和更新现有功能的猴子补丁(monkey patches)模块,主要涉及图像处理和PyTorch的功能。它通过对一些常用函数的重新定义,提供了更灵活和更具兼容性的实现。
首先,文件导入了必要的库,包括 Path
(用于处理文件路径)、cv2
(OpenCV库,用于图像处理)、numpy
(用于数值计算)和 torch
(PyTorch库,用于深度学习)。
在OpenCV相关的功能部分,首先定义了一个 _imshow
变量,复制了 cv2.imshow
函数,以避免递归错误。接下来,定义了三个函数:
-
imread
:这个函数用于从文件中读取图像。它接受一个文件名和一个可选的标志参数,默认值为cv2.IMREAD_COLOR
,表示以彩色模式读取图像。函数内部使用cv2.imdecode
和np.fromfile
来读取图像数据并返回为一个NumPy数组。 -
imwrite
:该函数用于将图像写入文件。它接受文件名、图像数组和可选的参数列表。函数使用cv2.imencode
将图像编码为指定格式,并通过tofile
方法将其写入文件。如果写入成功,返回True
,否则返回False
。 -
imshow
:这个函数用于在指定窗口中显示图像。它接受窗口名称和图像数组作为参数。为了支持多语言,窗口名称经过编码处理后传递给_imshow
函数。
在PyTorch相关的功能部分,首先定义了一个 _torch_save
变量,复制了 torch.save
函数。接着定义了 torch_save
函数:
这个函数用于保存对象,并使用 dill
库(如果可用)来序列化那些 pickle
无法处理的 lambda 函数。函数接受任意数量的位置参数和关键字参数。如果没有指定 pickle_module
,则使用 dill
或者 pickle
作为序列化模块。最后调用 _torch_save
进行实际的保存操作。
总的来说,这个文件通过对常用的图像处理和模型保存函数进行封装和扩展,提供了更为灵活和多功能的接口,增强了代码的可用性和兼容性。
11.2 ultralytics\data\annotator.py
以下是代码中最核心的部分,并附上详细的中文注释:
from pathlib import Path
from ultralytics import SAM, YOLO
def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='', output_dir=None):
"""
自动为图像添加注释,使用YOLO目标检测模型和SAM分割模型。
参数:
data (str): 包含待注释图像的文件夹路径。
det_model (str, optional): 预训练的YOLO检测模型,默认为'yolov8x.pt'。
sam_model (str, optional): 预训练的SAM分割模型,默认为'sam_b.pt'。
device (str, optional): 运行模型的设备,默认为空字符串(CPU或可用的GPU)。
output_dir (str | None | optional): 保存注释结果的目录。
默认为与'data'相同目录下的'labels'文件夹。
示例:
auto_annotate(data='ultralytics/assets', det_model='yolov8n.pt', sam_model='mobile_sam.pt')
"""
# 加载YOLO目标检测模型
det_model = YOLO(det_model)
# 加载SAM分割模型
sam_model = SAM(sam_model)
# 将数据路径转换为Path对象
data = Path(data)
# 如果未指定输出目录,则创建一个默认的输出目录
if not output_dir:
output_dir = data.parent / f'{data.stem}_auto_annotate_labels'
# 创建输出目录(如果不存在)
Path(output_dir).mkdir(exist_ok=True, parents=True)
# 使用YOLO模型进行目标检测,返回检测结果
det_results = det_model(data, stream=True, device=device)
# 遍历每个检测结果
for result in det_results:
# 获取检测到的类别ID
class_ids = result.boxes.cls.int().tolist() # noqa
# 如果检测到的类别ID不为空
if len(class_ids):
# 获取边界框坐标
boxes = result.boxes.xyxy # 获取边界框的坐标
# 使用SAM模型进行分割,传入边界框
sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device)
# 获取分割结果
segments = sam_results[0].masks.xyn # noqa
# 将分割结果写入文本文件
with open(f'{str(Path(output_dir) / Path(result.path).stem)}.txt', 'w') as f:
for i in range(len(segments)):
s = segments[i]
# 如果分割结果为空,则跳过
if len(s) == 0:
continue
# 将分割结果转换为字符串并写入文件
segment = map(str, segments[i].reshape(-1).tolist())
f.write(f'{class_ids[i]} ' + ' '.join(segment) + '\n')
代码核心部分解释:
- 模型加载:使用
YOLO
和SAM
类加载预训练的目标检测和分割模型。 - 路径处理:使用
Path
类处理文件路径,确保输出目录存在。 - 目标检测:通过YOLO模型对指定文件夹中的图像进行目标检测,获取检测结果。
- 分割处理:对于每个检测结果,使用SAM模型进行图像分割,并获取分割的结果。
- 结果保存:将分割结果及其对应的类别ID写入文本文件,便于后续使用。
这个程序文件的主要功能是自动为图像进行标注,使用了YOLO对象检测模型和SAM分割模型。程序首先导入了必要的库,包括Path
用于处理文件路径,以及SAM
和YOLO
类用于加载相应的模型。
auto_annotate
函数是该文件的核心功能,接受多个参数。data
参数是待标注图像的文件夹路径,det_model
和sam_model
分别是预训练的YOLO检测模型和SAM分割模型的文件名,device
用于指定运行模型的设备(如CPU或GPU),而output_dir
则是保存标注结果的目录。如果未指定输出目录,程序会在数据路径的同级目录下创建一个名为{data.stem}_auto_annotate_labels
的文件夹。
函数开始时,通过YOLO和SAM类加载相应的模型。接着,程序会检查输出目录是否存在,如果不存在则创建该目录。然后,使用YOLO模型对指定的图像数据进行检测,返回检测结果。
在处理检测结果时,程序提取出每个结果的类别ID和边界框坐标。如果检测到目标,程序会调用SAM模型对原始图像进行分割,传入边界框信息。分割结果以坐标形式返回。
最后,程序将每个图像的分割结果写入到一个文本文件中,文件名与原始图像相同,后缀为.txt
。每一行包含类别ID和对应的分割坐标。通过这种方式,用户可以方便地获取自动标注的结果。
11.3 ultralytics\data_init_.py
# 导入必要的模块和类
# Ultralytics YOLO 🚀, AGPL-3.0 license
# 从base模块导入BaseDataset类
from .base import BaseDataset
# 从build模块导入构建数据加载器和YOLO数据集的函数
from .build import build_dataloader, build_yolo_dataset, load_inference_source
# 从dataset模块导入分类数据集、语义数据集和YOLO数据集的类
from .dataset import ClassificationDataset, SemanticDataset, YOLODataset
# 定义模块的公开接口,允许外部使用这些类和函数
__all__ = (
'BaseDataset', # 基础数据集类
'ClassificationDataset', # 分类数据集类
'SemanticDataset', # 语义分割数据集类
'YOLODataset', # YOLO特定的数据集类
'build_yolo_dataset', # 构建YOLO数据集的函数
'build_dataloader', # 构建数据加载器的函数
'load_inference_source' # 加载推理源的函数
)
注释说明:
- 导入模块:代码的前半部分负责导入所需的类和函数,这些都是实现YOLO(You Only Look Once)目标检测模型所需的基础组件。
- 公开接口:
__all__
变量定义了模块的公共接口,允许用户从该模块中导入特定的类和函数。这样做可以隐藏模块内部的实现细节,只暴露必要的部分,增强模块的封装性。
这个程序文件是Ultralytics YOLO项目中的一个初始化文件,文件名为__init__.py
,它的主要作用是定义模块的公共接口,并导入相关的类和函数。
首先,文件开头有一个注释,表明这是Ultralytics YOLO项目的一部分,并且遵循AGPL-3.0许可证。这说明该项目是开源的,用户可以自由使用和修改,但需要遵循相应的许可证条款。
接下来,文件通过相对导入的方式引入了几个模块中的类和函数。具体来说,它从base
模块中导入了BaseDataset
类,这个类可能是所有数据集类的基类,提供了一些通用的功能和接口。然后,从build
模块中导入了三个函数:build_dataloader
、build_yolo_dataset
和load_inference_source
。这些函数可能用于构建数据加载器、构建YOLO数据集以及加载推理源等。
此外,文件还导入了三个数据集类:ClassificationDataset
、SemanticDataset
和YOLODataset
,这些类分别用于处理分类任务、语义分割任务和YOLO目标检测任务的数据。
最后,__all__
变量定义了该模块的公共接口,列出了可以被外部导入的类和函数。这意味着,当其他模块使用from ultralytics.data import *
语句时,只会导入__all__
中列出的内容,从而控制了模块的可见性。
总体而言,这个初始化文件的主要功能是组织和导出与数据集相关的类和函数,使得在使用Ultralytics YOLO时,用户能够方便地访问和使用这些功能。
11.4 ultralytics\utils\callbacks\clearml.py
以下是代码中最核心的部分,并附上详细的中文注释:
# 导入必要的库和模块
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING
try:
# 确保没有在运行测试
assert not TESTS_RUNNING
# 确保ClearML集成已启用
assert SETTINGS['clearml'] is True
import clearml
from clearml import Task
from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO
from clearml.binding.matplotlib_bind import PatchedMatplotlib
# 确保ClearML包的版本是有效的
assert hasattr(clearml, '__version__')
except (ImportError, AssertionError):
clearml = None # 如果导入失败,则将clearml设置为None
def _log_debug_samples(files, title='Debug Samples') -> None:
"""
将文件(图像)作为调试样本记录到ClearML任务中。
参数:
files (list): 以PosixPath格式的文件路径列表。
title (str): 用于将具有相同值的图像分组的标题。
"""
import re
task = Task.current_task() # 获取当前任务
if task:
for f in files:
if f.exists(): # 检查文件是否存在
it = re.search(r'_batch(\d+)', f.name) # 从文件名中提取批次号
iteration = int(it.groups()[0]) if it else 0 # 获取迭代次数
task.get_logger().report_image(title=title,
series=f.name.replace(it.group(), ''),
local_path=str(f),
iteration=iteration) # 记录图像
def on_pretrain_routine_start(trainer):
"""在预训练例程开始时运行;初始化并连接/记录任务到ClearML。"""
try:
task = Task.current_task() # 获取当前任务
if task:
# 确保自动的pytorch和matplotlib绑定被禁用
PatchPyTorchModelIO.update_current_task(None)
PatchedMatplotlib.update_current_task(None)
else:
# 初始化一个新的ClearML任务
task = Task.init(project_name=trainer.args.project or 'YOLOv8',
task_name=trainer.args.name,
tags=['YOLOv8'],
output_uri=True,
reuse_last_task_id=False,
auto_connect_frameworks={
'pytorch': False,
'matplotlib': False})
LOGGER.warning('ClearML Initialized a new task. If you want to run remotely, '
'please add clearml-init and connect your arguments before initializing YOLO.')
task.connect(vars(trainer.args), name='General') # 连接训练参数
except Exception as e:
LOGGER.warning(f'WARNING ⚠️ ClearML installed but not initialized correctly, not logging this run. {e}')
def on_train_epoch_end(trainer):
"""在YOLO训练的每个epoch结束时记录调试样本并报告当前训练进度。"""
task = Task.current_task() # 获取当前任务
if task:
# 记录调试样本
if trainer.epoch == 1:
_log_debug_samples(sorted(trainer.save_dir.glob('train_batch*.jpg')), 'Mosaic') # 记录第一轮的样本
# 报告当前训练进度
for k, v in trainer.validator.metrics.results_dict.items():
task.get_logger().report_scalar('train', k, v, iteration=trainer.epoch) # 记录指标
def on_train_end(trainer):
"""在训练完成时记录最终模型及其名称。"""
task = Task.current_task() # 获取当前任务
if task:
# 记录最终结果,包括混淆矩阵和PR曲线
files = [
'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png',
*(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # 过滤存在的文件
for f in files:
_log_plot(title=f.stem, plot_path=f) # 记录图像
# 报告最终指标
for k, v in trainer.validator.metrics.results_dict.items():
task.get_logger().report_single_value(k, v) # 记录单个指标
# 记录最终模型
task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False)
# 定义回调函数
callbacks = {
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_train_epoch_end': on_train_epoch_end,
'on_train_end': on_train_end} if clearml else {}
代码核心部分说明:
- ClearML集成:代码首先检查ClearML是否可用,并确保集成设置正确。
- 日志记录功能:定义了多个函数来记录训练过程中的不同信息,包括调试样本、训练进度、模型信息等。
- 回调机制:通过定义回调函数来在训练的不同阶段(如预训练开始、每个epoch结束、训练结束)执行特定的操作。
这个程序文件 clearml.py
是用于与 ClearML 进行集成的回调函数,主要用于在训练 YOLO 模型时记录和管理训练过程中的各种信息。文件中首先导入了一些必要的模块和库,包括 clearml
和 Task
,并进行了必要的检查以确保 ClearML 集成已启用。
文件中定义了几个主要的函数。_log_debug_samples
函数用于将调试样本(通常是图像)记录到当前的 ClearML 任务中。它接收一个文件路径列表和一个标题,并通过正则表达式提取批次信息,以便将图像与其对应的迭代次数关联。
_log_plot
函数用于将图像作为绘图记录到 ClearML 的绘图部分。它读取指定路径的图像,并使用 Matplotlib 创建一个无刻度的图像展示。
on_pretrain_routine_start
函数在预训练例程开始时运行,负责初始化和连接 ClearML 任务。如果当前没有任务,它会创建一个新任务,并连接训练参数。此函数还确保 PyTorch 和 Matplotlib 的自动绑定被禁用,以便手动记录这些信息。
on_train_epoch_end
函数在每个训练周期结束时调用,记录调试样本并报告当前的训练进度。在第一个周期结束时,它会记录训练批次的图像。
on_fit_epoch_end
函数在每个周期结束时报告模型信息,包括周期时间和其他模型信息。
on_val_end
函数在验证结束时调用,记录验证结果,包括标签和预测的图像。
on_train_end
函数在训练完成时调用,记录最终模型及其名称,并记录最终的结果和指标,包括混淆矩阵和其他性能曲线。
最后,文件定义了一个 callbacks
字典,将各个回调函数与其对应的事件关联起来,只有在成功导入 ClearML 时才会进行此操作。这些回调函数可以在训练过程中被触发,以便在 ClearML 中记录和管理训练过程中的各种信息。
11.5 ultralytics\trackers_init_.py
以下是代码中最核心的部分,并附上详细的中文注释:
# 导入所需的跟踪器类
from .bot_sort import BOTSORT # 导入BOTSORT类,用于目标跟踪
from .byte_tracker import BYTETracker # 导入BYTETracker类,用于另一种目标跟踪
from .track import register_tracker # 导入注册跟踪器的函数
# 定义模块的公开接口,允许其他模块简化导入
__all__ = 'register_tracker', 'BOTSORT', 'BYTETracker'
注释说明:
-
导入模块:
from .bot_sort import BOTSORT
:从当前包中导入BOTSORT
类,BOTSORT
是一种用于目标跟踪的算法。from .byte_tracker import BYTETracker
:从当前包中导入BYTETracker
类,BYTETracker
是另一种目标跟踪算法。from .track import register_tracker
:从当前包中导入register_tracker
函数,用于注册跟踪器,使其可以在系统中使用。
-
__all__
变量:__all__
是一个特殊变量,用于定义当使用from module import *
时,哪些名称是可以被导入的。在这里,register_tracker
、BOTSORT
和BYTETracker
被列为公开接口,意味着它们是模块的主要功能部分,其他模块可以直接导入和使用。
这个程序文件是一个Python模块的初始化文件,通常用于定义模块的公共接口和导入其他子模块。在这个特定的文件中,首先包含了一些版权信息,表明该代码属于Ultralytics YOLO项目,并且遵循AGPL-3.0许可证。
接下来,文件从当前包中导入了三个组件:BOTSORT
、BYTETracker
和register_tracker
。这些组件可能是实现目标跟踪算法的类或函数,分别对应不同的跟踪方法。BOTSORT
和BYTETracker
可能是具体的跟踪算法实现,而register_tracker
则可能是一个用于注册这些跟踪器的函数。
最后,__all__
变量被定义为一个包含字符串的元组,列出了该模块公开的接口。这意味着当使用from ultralytics.trackers import *
这种方式导入模块时,只会导入register_tracker
、BOTSORT
和BYTETracker
这三个名称,从而控制了模块的可见性和使用方式。这种做法有助于避免命名冲突,并使得模块的使用更加清晰。
12.系统整体结构(节选)
程序整体功能和构架概括
该程序是Ultralytics YOLO项目的一部分,主要用于目标检测和图像处理。它的整体架构分为多个模块,每个模块负责特定的功能。以下是各个模块的主要功能:
-
utils/patches.py:提供了对常用图像处理和模型保存函数的扩展和兼容性增强,主要用于读取和写入图像文件,以及保存PyTorch模型。
-
data/annotator.py:实现了自动标注功能,使用YOLO模型进行目标检测,并结合SAM模型进行图像分割,最终生成标注结果文件。
-
data/init.py:作为数据模块的初始化文件,组织和导出与数据集相关的类和函数,提供了数据加载和处理的接口。
-
utils/callbacks/clearml.py:集成了ClearML,用于在训练过程中记录和管理训练信息,包括调试样本、训练进度和验证结果等。
-
trackers/init.py:初始化目标跟踪模块,导入不同的跟踪算法和注册功能,提供目标跟踪的接口。
文件功能整理表
文件路径 | 功能描述 |
---|---|
ultralytics/utils/patches.py | 扩展图像处理和模型保存功能,提供图像读取、写入和PyTorch模型保存的兼容性增强。 |
ultralytics/data/annotator.py | 实现自动标注功能,使用YOLO进行目标检测并结合SAM进行图像分割,生成标注结果文件。 |
ultralytics/data/__init__.py | 初始化数据模块,组织和导出数据集相关的类和函数,提供数据加载和处理的接口。 |
ultralytics/utils/callbacks/clearml.py | 集成ClearML,记录训练过程中的调试样本、训练进度和验证结果等信息。 |
ultralytics/trackers/__init__.py | 初始化目标跟踪模块,导入不同的跟踪算法和注册功能,提供目标跟踪的接口。 |
这个结构使得Ultralytics YOLO项目能够灵活地处理数据、进行模型训练和评估,同时支持与外部工具(如ClearML)的集成,增强了整体的可用性和功能性。
注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“50+种创新点源码”以“14.完整训练+Web前端界面+50+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。
13.图片、视频、摄像头图像分割Demo(去除WebUI)代码
在这个博客小节中,我们将讨论如何在不使用WebUI的情况下,实现图像分割模型的使用。本项目代码已经优化整合,方便用户将分割功能嵌入自己的项目中。
核心功能包括图片、视频、摄像头图像的分割,ROI区域的轮廓提取、类别分类、周长计算、面积计算、圆度计算以及颜色提取等。
这些功能提供了良好的二次开发基础。
核心代码解读
以下是主要代码片段,我们会为每一块代码进行详细的批注解释:
import random
import cv2
import numpy as np
from PIL import ImageFont, ImageDraw, Image
from hashlib import md5
from model import Web_Detector
from chinese_name_list import Label_list
# 根据名称生成颜色
def generate_color_based_on_name(name):
......
# 计算多边形面积
def calculate_polygon_area(points):
return cv2.contourArea(points.astype(np.float32))
...
# 绘制中文标签
def draw_with_chinese(image, text, position, font_size=20, color=(255, 0, 0)):
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(image_pil)
font = ImageFont.truetype("simsun.ttc", font_size, encoding="unic")
draw.text(position, text, font=font, fill=color)
return cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
# 动态调整参数
def adjust_parameter(image_size, base_size=1000):
max_size = max(image_size)
return max_size / base_size
# 绘制检测结果
def draw_detections(image, info, alpha=0.2):
name, bbox, conf, cls_id, mask = info['class_name'], info['bbox'], info['score'], info['class_id'], info['mask']
adjust_param = adjust_parameter(image.shape[:2])
spacing = int(20 * adjust_param)
if mask is None:
x1, y1, x2, y2 = bbox
aim_frame_area = (x2 - x1) * (y2 - y1)
cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 0, 255), thickness=int(3 * adjust_param))
image = draw_with_chinese(image, name, (x1, y1 - int(30 * adjust_param)), font_size=int(35 * adjust_param))
y_offset = int(50 * adjust_param) # 类别名称上方绘制,其下方留出空间
else:
mask_points = np.concatenate(mask)
aim_frame_area = calculate_polygon_area(mask_points)
mask_color = generate_color_based_on_name(name)
try:
overlay = image.copy()
cv2.fillPoly(overlay, [mask_points.astype(np.int32)], mask_color)
image = cv2.addWeighted(overlay, 0.3, image, 0.7, 0)
cv2.drawContours(image, [mask_points.astype(np.int32)], -1, (0, 0, 255), thickness=int(8 * adjust_param))
# 计算面积、周长、圆度
area = cv2.contourArea(mask_points.astype(np.int32))
perimeter = cv2.arcLength(mask_points.astype(np.int32), True)
......
# 计算色彩
mask = np.zeros(image.shape[:2], dtype=np.uint8)
cv2.drawContours(mask, [mask_points.astype(np.int32)], -1, 255, -1)
color_points = cv2.findNonZero(mask)
......
# 绘制类别名称
x, y = np.min(mask_points, axis=0).astype(int)
image = draw_with_chinese(image, name, (x, y - int(30 * adjust_param)), font_size=int(35 * adjust_param))
y_offset = int(50 * adjust_param)
# 绘制面积、周长、圆度和色彩值
metrics = [("Area", area), ("Perimeter", perimeter), ("Circularity", circularity), ("Color", color_str)]
for idx, (metric_name, metric_value) in enumerate(metrics):
......
return image, aim_frame_area
# 处理每帧图像
def process_frame(model, image):
pre_img = model.preprocess(image)
pred = model.predict(pre_img)
det = pred[0] if det is not None and len(det)
if det:
det_info = model.postprocess(pred)
for info in det_info:
image, _ = draw_detections(image, info)
return image
if __name__ == "__main__":
cls_name = Label_list
model = Web_Detector()
model.load_model("./weights/yolov8s-seg.pt")
# 摄像头实时处理
cap = cv2.VideoCapture(0)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
......
# 图片处理
image_path = './icon/OIP.jpg'
image = cv2.imread(image_path)
if image is not None:
processed_image = process_frame(model, image)
......
# 视频处理
video_path = '' # 输入视频的路径
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
ret, frame = cap.read()
......
14.完整训练+Web前端界面+50+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)
参考原始博客1: https://gitee.com/YOLOv8_YOLOv11_Segmentation_Studio/YCB-RoboCup@Home-24272
参考原始博客2: https://github.com/YOLOv8-YOLOv11-Segmentation-Studio/YCB-RoboCup@Home-24272