我一直很困惑“最小二乘法”、“梯度下降法”、“最大似然估计法”到底是机器学习中求解参数的方法,还是最优化的方法?
(1)狭义的最小二乘法,是线性假设下的一种有闭式解的参数
求解方法,最终结果为全局最优;
(2)梯度下降法,是假设条件更为广泛(无约束)的,一种通过迭代更新来逐步进行的参数 优化方法,最终结果为局部最优;
(3)广义的最小二乘准则,是一种对于偏差程度的评估准则,本质上一种目标函数(objective function),与上两者不同。
(2)梯度下降法,是假设条件更为广泛(无约束)的,一种通过迭代更新来逐步进行的参数 优化方法,最终结果为局部最优;
(3)广义的最小二乘准则,是一种对于偏差程度的评估准则,本质上一种目标函数(objective function),与上两者不同。
--------------------------------