新手最容易混淆的概念最小二乘法

我一直很困惑“最小二乘法”、“梯度下降法”、“最大似然估计法”到底是机器学习中求解参数的方法,还是最优化的方法?
(1)狭义的最小二乘法,是线性假设下的一种有闭式解的参数 求解方法,最终结果为全局最优;
(2)梯度下降法,是假设条件更为广泛(无约束)的,一种通过迭代更新来逐步进行的参数 优化方法,最终结果为局部最优;
(3)广义的最小二乘准则,是一种对于偏差程度的评估准则,本质上一种目标函数(objective function),与上两者不同。

--------------------------------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值