第三部分复习以及左右逆,伪逆

1,
如果矩阵A为对称矩阵,那么它一定可以相似对角化.并且特征值都是实数,特征向量相互正交.

相似矩阵其实就是在用不同的基来表示同一种东西,就像之前的线性变换.
在这里插入图片描述
并且两个矩阵的幂也成相似.
可以说M改变了矩阵A的特征向量,但是没有改变矩阵的特征值.

2,微分方程题目
在这里插入图片描述
首先由矩阵列出通解形式,这样我们求出C,特征值特征向量就可以确定结果.
这个方程满足的应该是U1=-U2,U2=U1-U3,U3=U2,可以很明显看出来有一个方程是多余的,并且矩阵A还是一个反对称矩阵,特征值为纯虚数或0
在这里插入图片描述
在这里插入图片描述

最终求得特征值,从特征值可以看出来U(t)是收敛于一个数的,因为C1不变,e的多少次方模为1,并且还是周期的,周期为pi乘以根号2
在这里插入图片描述
对于反对称矩阵,这里有一条性质就是特征向量也相互正交.
在这里插入图片描述
那么什么样的矩阵具有相互正交的特征向量呢?
就是满足上面公式的矩阵.所以对于对称与反对称矩阵很明显符合要求.正交矩阵也符合要求
在这里插入图片描述
对于微分方程有以上结论,我们不一定需要求出来这个矩阵A才能得到解,但是每一个结果的背后都有一个A.
在这里插入图片描述
在A可相似对角化的情况下,可以写成如上形式,这里A其实就是刚开始的矩阵.
我们从上面的通解可以看出,结果由C,S和e指数部分组成.为SeC,那么u0=SC
u(t)=e的At次方×u0,就是SeS的逆×SC,得到的结果是一样的.

3,
在这里插入图片描述
对于这三个特征值与特征向量,当c为何值时,矩阵可以相似对角化?
相似对角化的关键在于,足够的特征向量,这三个特征向量线性无关,所以无论c取何值,矩阵都可以相似对角化.
并且还注意到特征向量是相互正交的.

第二个问题,c取何值时,矩阵是对称的?
c取实数的时候.

当c大于等于0的时候,矩阵为半正定矩阵,但永远不会是正定矩阵.

第三个问题,可能是马尔可夫矩阵吗?
不可能,因为马尔可夫矩阵有一个特征值等于1,并且其他的特征值都不大于1.

第四个问题,
在这里插入图片描述
可能是投影矩阵吗?
投影矩阵的特征值只能是0或1,所以c取0或2都可以构成投影矩阵.

这一切的前提是由特征向量推出了矩阵对称.这里注意投影矩阵一定是对称矩阵.这里有一个小知识,若矩阵为方阵且其逆矩阵存在时,矩阵的逆的转置 等于 矩阵的转置的逆.

由上可以看出,从特征值中就可以看出矩阵的很多特点.

4,奇异值分解
在这里插入图片描述这里注意U和V都是正交矩阵.
在这里插入图片描述
我们在之前分解奇异值的时候发现,原本的方法无法确定U和V的方向,正确的做法是先选定其中的一个,然后根据AV=UE来确定另一个.
另外,分解出的对角矩阵元素为非负的.
在这里插入图片描述
如果奇异值分解时,对角矩阵分解如上,那么A的0空间中的一个向量就是V2,因为V2对应于特征值为0的特征向量,当然在0空间中.

5,那么正交矩阵的特征值有什么特点?
正交矩阵起的作用是旋转,所以不改变向量的长度,
在这里插入图片描述
所以有特征值的绝对值等于1.
一个正交对称矩阵的特征值只能是1或-1,
那么如何证明
在这里插入图片描述
是一个投影矩阵呢?
有两种方法,第一种方法证明特征值等于1或0
第二种方法,证明它是对称矩阵并且平方等于本身.
在这里插入图片描述
这里I是因为A平方等于I,A=A转置=A逆

2,左右逆和伪逆
什么时候矩阵A(m×n)具有左右两边的逆矩阵.
在这里插入图片描述
其中r=n列满秩,就是左逆的情况.
这里列满秩,但是行不要求,如果最后化简出0=0,那么方程有唯一解,如果化简出0不等于0,那么就无解,不会出现无穷解的情况.

对于长方矩阵来说,
在这里插入图片描述
是很好的观察对象,因为其与A的秩相同
在这里插入图片描述
这里就可以看出A的左逆的另一种表示方法.
这里可以看出这个矩阵与投影矩阵与最小二乘法时候的矩阵很相似.
这里注意非方阵是没有可逆的概念的.但是对于广义逆来说,非方阵也有左右逆,主要是其逆中隐含着投影矩阵.
在这里插入图片描述

对于n<m并且列满秩的情况来说,A×A转置是不可逆的,因为是m×m阶矩阵.
所以一个长方矩阵不会两边同时可逆.

对于右逆的情况,即m<n并且行满秩的情况,一定有无穷多解.
这种情况下是左零空间没有了,
在这里插入图片描述

对于列满秩情况
在这里插入图片描述
右乘A得到I,左乘A得到投影矩阵,为什么呢?
一个投影矩阵想要尽可能靠近单位矩阵,因为这样没有误差.左乘A没有得到I但是将向量带入列空间.
在这里插入图片描述
对于行满秩矩阵,其右乘A也得到一个投影矩阵.他是A转置的投影矩阵,投影在行空间上,并且尽可能接近I,将向量带入行空间.

伪逆
对于最一般情况的秩r来说,就是与m,n都不相同.零空间与左零空间都存在,这种情况下,左右逆都不存在.

那么我们从行空间中取一个向量y,乘以A,Ay可以表示成列空间中的一个向量,并且有一一对应关系.也就是说从行空间到列空间的映射A.
简单来说就是y属于行空间,Ay属于列空间.
那么反过来,从列空间到行空间的映射就叫做A+,伪逆
在这里插入图片描述
这种A矩阵和A伪逆把零空间和左零空间都消除了.因为A保证了映射不到零空间中
在这里插入图片描述
证明,行空间与列空间的一一映射关系,x,y属于行空间,证明AX不等于AY.
如果Ax=Ay,那么x-y即属于0空间又属于行空间,所以只能是0向量,而x不等于y,所以证明Ax不等于Ay

为什么需要伪逆的概念?
还是由于最小二乘法和投影,这样在A不是满秩,列满秩,行满秩的情况下,也可以使用.

那么如何来找到伪逆?
在这里插入图片描述
奇异值方法,注意伪逆与原矩阵的大小是经过转置的.
在这里插入图片描述
在这里插入图片描述
这两个区别在于大小.
在这里插入图片描述
所以说A的伪逆如上.
这样就解决了不满秩的情况.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值