轻量化微调使用场景对比

这些技术都是在大型预训练语言模型(LLM)基础上发展起来的微调方法,旨在高效地适应下游任务,减少训练成本,或者在资源有限的情况下优化模型性能。下面将逐一介绍它们的原理和使用场景。

1. Prompt Tuning

原理

Prompt Tuning 通过引入任务特定的提示(prompt)来微调预训练模型。这些提示通常是可学习的文本或词汇,前置在输入文本前,引导模型生成符合特定任务的输出。

  • 提示向量

    • 使用一组可学习的提示向量作为前缀,这些向量在训练过程中被优化。
    • 例如,在分类任务中,提示可能是 "Classify: ",然后是输入文本。
  • 固定模型参数

    • 模型的原始参数保持不变,只有提示向量会在训练过程中调整。
    • 这种方法只需存储和优化少量提示参数,极大减少了微调所需的计算和存储成本。
使用场景
  • 多任务学习:可以快速适应多个不同的任务,每个任务只需一个独立的提示向量。
  • 少样本学习:在样本数量少的情况下,通过适当的提示可以增强模型的表现。
  • 低资源环境:由于只需调整提示参数,适合在计算资源受限的环境下使用。
示例
  • 任务描述:判断评论是正面还是负面。
  • 原始输入"The movie was amazing!"
  • 提示词向量:添加一个可学习的提示词 "Classify:",使模型知道这是一个分类任务。

训练时,输入格式变为:

"Classify: The movie was amazing!"

模型通过学习 Classify: 提示词的意义,可以更准确地分类输入评论的情感。

2. P-Tuning

原理

P-Tuning 是对 Prompt Tuning 的扩展,将提示从离散的词汇表示为连续的嵌入向量。这些嵌入向量可以在模型的嵌入空间中被直接优化,允许更精细地调整模型的表示能力。

  • 连续嵌入

    • 提示被表示为连续的嵌入向量,而不是离散的词或短语。
    • 这些嵌入向量在训练过程中被作为独立变量优化。
  • 深度调整

    • 连续嵌入向量提供了更细粒度的控制,特别是在复杂任务和需要深度语义理解的场景中。
使用场景
  • 复杂任务:适合需要模型捕捉输入文本与任务需求之间复杂关系的场景,如深度语义理解。
  • 高要求的生成任务:在需要精细控制生成内容的任务中,如自动写作或对话生成。
  • 序列标注:在任务中,利用提示嵌入来引导模型,如命名实体识别(NER)或词性标注。
示例
  • 任务描述:识别文本中的公司名称和地点。
  • 原始输入"Google is a company based in the US."
  • 提示嵌入:添加一组可学习的嵌入向量 [E1 E2 E3] 作为提示。

训练时,输入格式变为嵌入形式:

"[E1 E2 E3] Google is a company based in the US."

这些嵌入向量 [E1 E2 E3] 是连续的向量,模型通过优化这些向量来更好地理解和识别实体。

3. Prefix-Tuning

原理

Prefix-Tuning 是通过添加一组可学习的前缀向量(prefix vectors)来调整预训练模型。这些前缀向量插入到模型的每一层中,作为辅助输入,帮助模型更好地适应特定任务。

  • 前缀向量

    • 前缀向量是插入到模型输入序列前的一组可学习向量。
    • 这些向量不仅在输入层使用,还在模型的每一层前向传播中加入。
  • 轻量级调整

    • 前缀向量在训练过程中被优化,而模型的其余部分保持不变。
    • 这种方法相比全模型微调,需要调整和存储的参数更少。
使用场景
  • 跨层信息引导:在模型的每一层加入前缀向量,使得前缀信息能够在整个模型中传播,适合需要深度信息调整的任务。
  • 高效微调:减少了微调过程中对模型参数的调整,适合资源受限的环境。
  • 生成任务:在文本生成任务中,通过前缀向量可以控制生成内容的风格或结构。
示例
  • 任务描述:生成具有特定风格的故事开头。
  • 原始输入"Once upon a time,"
  • 前缀向量:添加一组可学习的前缀向量 [P1 P2 P3],这些前缀在模型的每一层都被插入。

训练时,输入格式变为:

"[P1 P2 P3] Once upon a time,"

这些前缀向量 [P1 P2 P3] 可以引导模型生成特定风格的故事文本。

与P-Tuning的区别
  • 输入形式:P-Tuning 使用连续的嵌入向量作为输入提示,而 Prefix-Tuning 使用可学习的前缀向量作为额外的输入信息。
  • 作用方式:P-Tuning 的提示向量直接参与模型的计算,而 Prefix-Tuning 的前缀向量通常不直接参与计算,而是提供额外的任务相关信息。
  • 位置:P-Tuning 的提示向量直接嵌入到模型的输入中,而 Prefix-Tuning 的前缀向量被插入到模型的每一层输入前。

4. LoRA (Low-Rank Adaptation)

原理

LoRA 是一种通过低秩矩阵分解来调整模型的高效微调方法。它通过添加一组低秩的调整矩阵来近似表示模型的权重变化,从而减少微调的参数量和计算复杂度。

  • 低秩分解

    • 将模型参数的调整表示为一对低秩矩阵的乘积。
    • 这对矩阵在训练过程中被优化,用于捕捉参数调整的主要方向。
  • 高效微调

    • LoRA 仅对低秩矩阵进行优化,而不改变原始模型的参数。
    • 这种方法大幅减少了微调所需的参数量,适合在大规模模型上的高效微调。
使用场景
  • 资源受限环境:由于只需存储和优化低秩矩阵,LoRA 适合在计算资源受限的环境中进行大规模模型的微调。
  • 大规模模型微调:适用于需要频繁微调的大规模模型,如 GPT-3、BERT 等。
  • 任务适应:在需要快速适应新任务的情况下,LoRA 可以提供有效的参数调整。
示例

假设我们微调一个 BERT 模型用于情感分类任务:

  • 原始权重矩阵:W
  • 低秩调整矩阵:AB,其中 W + AB 是微调后的权重表示。

通过优化 AB,可以有效地调整模型以适应特定任务。

5. QLoRA (Quantized Low-Rank Adaptation)

原理

QLoRA 结合了量化和低秩分解技术,通过在低精度下表示模型的参数来进一步减少计算和存储需求。它利用量化技术对模型参数进行低精度表示,同时应用低秩分解来高效地微调模型。

  • 参数量化

    • 将模型的参数量化为较低的精度(如 8-bit 或 4-bit),以减少存储和计算成本。
    • 量化后的参数仍然可以保持模型的主要特征,适合大规模模型的部署。
  • 低秩分解

    • 结合低秩分解方法,通过优化低秩矩阵来调整量化后的模型参数。
    • 这种方法在低精度的情况下,仍然能够有效地进行模型微调。
使用场景
  • 超大规模模型:适用于在超大规模模型(如 GPT-3、T5)上进行高效的微调和部署。
  • 边缘设备部署:由于量化和低秩分解大幅减少了计算和存储需求,适合在边缘设备或低资源环境中部署。
  • 高效模型调整:在需要频繁调整模型以适应不同任务时,QLoRA 提供了一种高效的解决方案。
示例

对于量化后的 GPT-3 模型,进行情感分析任务:

  • 量化权重矩阵:W_q
  • 低秩调整矩阵:AB,其中 W_q + AB 是微调后的低精度权重表示。

通过优化 AB,可以在低精度的情况下有效地微调模型。

总结对比

特性Prompt TuningP-TuningPrefix-TuningLoRAQLoRA
调整方式离散的提示词向量连续的提示嵌入向量可学习的前缀向量,插入到每层低秩矩阵分解量化 + 低秩矩阵分解
参数量较少较多较少极少(仅低秩矩阵)极少(量化 + 低秩矩阵)
微调粒度较粗(提示词级别)较细(嵌入向量级别)深层次(模型各层)低秩近似低精度 + 低秩近似
计算开销较低较高较低极低极低
适用场景多任务学习、少样本学习、低资源环境复杂任务、深度语义理解高效微调、生成任务、深度信息引导资源受限环境、大规模模型微调超大规模模型、边缘设备部署、高效调整
优点快速适应新任务、存储需求低高精度任务适应、深度语义理解适合生成任务、参数量小大幅减少参数量和计算需求在低精度情况下仍然能保持高效微调能力

通过理解这些技术的原理和适用场景,开发者可以选择最适合的微调方法来优化模型在特定任务中的表现,同时有效地管理计算和存储资源。

  • 36
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值