task=detect: 指定任务类型为目标检测。 |
mode=train: 设置模式为训练。 |
model=ultralytics/cfg/models/11/yolo11n.yaml: 指定模型配置文件的路径,这里使用的是YOLOv5的一个变体配置文件。 |
data=data.yaml: 指定数据配置文件的路径,该文件包含训练数据集的信息。 |
epochs=100: 设置训练轮数为100。 |
time=None: 不设置训练时间限制。 |
patience=50: 设置早停(early stopping)的耐心值为50,即如果连续50个epoch模型性能没有提升,则停止训练。 |
batch=8: 设置每个批次(batch)的大小为8。 |
imgsz=160: 设置输入图像的尺寸为160x160像素。 |
save=True: 启用模型保存功能。 |
save_period=-1: 设置保存模型的周期为每个epoch结束时,-1表示每个epoch都保存。 |
cache=disk: 设置缓存类型为磁盘缓存。 |
device=0: 指定使用第一个GPU设备(如果有多块GPU的话)。 |
workers=8: 设置数据加载的工作线程数为8。 |
project=runs/train: 设置项目目录为runs/train。 |
name=exp4: 设置实验名称为exp4。 |
exist_ok=False: 如果指定目录已存在,不覆盖现有文件。 |
pretrained=True: 使用预训练权重进行训练。 |
optimizer=SGD: 使用随机梯度下降(SGD)优化器。 |
verbose=True: 启用详细日志 |
seed: 设置随机种子,以确保实验的可重复性。这里设置为0。 |
deterministic: 当设置为True时,训练过程将更加确定,减少随机性。 |
single_cls: 如果为True,则表示只训练一个类别。这里设置为False,表示训练多个类别。 |
rect: 如果为True,则可能表示使用矩形框进行训练或推理。这里设置为False。 |
cos_lr: 如果为True,则使用余弦学习率调度。这里设置为False。 |
close_mosaic: 控制Mosaic数据增强的关闭程度。设置为0表示不关闭。 |
resume: 如果为True,则从上次保存的断点继续训练。这里设置为False。 |
amp: 如果为True,则使用自动混合精度(AMP)进行训练,以提高性能。这里设置为False。 |
fraction: 控制用于训练的数据集的比例。设置为1.0表示使用全部数据。 |
profile: 如果为True,则进行性能分析。这里设置为False。 |
freeze: 指定要冻结的模型层的列表。这里设置为None,表示不冻结任何层。 |
multi_scale: 如果为True,则使用多尺度训练。这里设置为False。 |
overlap_mask: 如果为True,则在数据增强时考虑遮罩的重叠。 |
mask_ratio: 控制遮罩的比例。 |
dropout: 设置dropout率,用于防止过拟合。 |
val: 如果为True,则在训练过程中进行验证。 |
split: 指定数据集分割的类型,这里设置为'val',表示使用验证集。 |
save_json: 如果为True,则保存结果为JSON格式。 |
save_hybrid (False): 是否保存混合精度模型,通常用于在推理时提高性能。 |
conf (None): 置信度阈值,用于决定何时认为检测到了一个对象。如果为None,则可能使用默认值。 |
iou (0.7): 交并比(Intersection over Union)阈值,用于决定何时认为两个检测框重叠度过高,需要进行非极大值抑制(NMS)。 |
max_det (300): 每张图像最多检测的对象数量。 |
half (False): 是否使用半精度(16位浮点)进行训练,这通常可以加速训练并减少内存使用,但可能会影响精度。 |
dnn (False): 是否使用深度神经网络(DNN)的特定优化。 |
plots (True): 是否在训练过程中生成和保存图表,如损失曲线、精度曲线等。 |
source (None): 训练数据的来源,如图像文件夹、视频文件或网络摄像头等。如果为None,则可能从其他地方指定数据源。 |
vid_stride (1): 视频处理时的步长,决定每隔多少帧处理一次。 |
stream_buffer (False): 是否为视频流使用缓冲区。 |
visualize (False): 是否在训练过程中可视化检测结果。 |
augment (False): 是否使用数据增强技术来提高模型的泛化能力。 |
agnostic_nms (False): 是否使用类别无关的NMS。 |
classes (None): 要检测的类别列表。如果为None,则可能从数据配置文件中读取。 |
retina_masks (False): 是否使用RetinaMask技术进行实例分割。 |
embed (None): 是否嵌入额外的特征或信息到模型中。 |
show=False: 不在训练过程中显示图像结果。 |
save_frames=False: 不保存训练过程中的图像帧。 |
save_txt=False: 不保存检测结果为文本文件。 |
save_conf=False: 不保存检测的置信度分数。 |
save_crop=False: 不保存裁剪后的图像。 |
show_labels=True: 在显示的图像上显示类别标签。 |
show_conf=True: 在显示的图像上显示置信度分数。 |
show_boxes=True: 在显示的图像上显示检测框。 |
line_width=None: 没有指定检测框的线宽,可能使用默认值。 |
format=torchscript: 将模型保存为TorchScript格式,这通常用于在不需要Python解释器的情况下部署模型。 |
keras=False: 不使用Keras框架。 |
optimize=False: 不对模型进行优化。 |
int8=False: 不使用8位整数量化。 |
dynamic=False: 不使用动态量化。 |
simplify=True: 对模型进行简化,可能包括去除不必要的操作和层。 |
opset=None: 没有指定ONNX操作集版本,可能使用默认值。 |
workspace=4: 为模型分配的工作空间大小(可能是内存或计算资源)。 |
nms=False: 不使用非极大值抑制(NMS),NMS通常用于去除重叠的检测框。 |
lr0=0.01: 初始学习率。 |
lrf=0.01: 最终学习率(可能是学习率衰减的目标值)。 |
momentum=0.937: 优化器的动量参数。 |
weight_decay=0.0005: 权重衰减,用于控制模型训练过程中的正则化强度,防止模型过拟合。 |
warmup_epochs=3.0: 预热周期,指定在训练开始阶段,学习率逐渐增加到预设值的周期数。 |
warmup_momentum=0.8: 预热动量,与预热周期一起使用,控制预热阶段优化器的动量。 |
warmup_bias_lr=0.1: 预热阶段偏置的学习率乘数。 |
box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0: 这些是不同损失类型的损失权重。box是边界框损失,cls是分类损失,dfl可能是指代某种特定的分布损失(如Focal Loss),pose可能是姿态估计相关的损失(如果模型支持的话),kobj可能是对象相关的损失。 |
label_smoothing=0.0: 标签平滑,用于减轻分类任务中的过拟合现象,这里设置为0表示不使用标签平滑。 |
nbs=64: 可能是指批处理大小(batch size)或者某种邻域搜索的参数,具体取决于上下文。在YOLO训练中,通常指批处理大小。 |
hsv_h=0.015, hsv_s=0.7, hsv_v=0.4: 这些是HSV颜色空间中的数据增强参数,分别表示色调、饱和度和明度的变化范围。 |
degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0: 这些是图像几何变换的参数,包括旋转角度、平移比例、缩放比例、剪切角度和透视变换强度。 |
flipud=0.0, fliplr=0.5, bgr=0.0: 图像翻转和数据格式转换的参数。flipud是上下翻转的概率,fliplr是左右翻转的概率,bgr是是否将图像从RGB转换为BGR格式的概率(在某些情况下,训练数据可能是BGR格式,而模型期望RGB格式,或者反之)。 |
mosaic=1.0, mixup=0.0, copy_paste=0.0: 这些是高级数据增强技术。mosaic是一种将四张图像拼接成一张进行训练的技术,mixup是一种将两张图像及其标签线性混合的技术,copy_paste是将一个图像中的对象复制到另一个图像中的技术。这里的值表示使用这些技术的概率。 |
copy_paste_mode=flip: 指定copy_paste增强时对象的处理方式,这里设置为flip表示可能会进行翻转操作。 |
auto_augment=randaugment: 自动数据增强技术,这里使用randaugment表示随机应用一系列数据增强操作。 |
erasing=0.4: 可能是指某种擦除技术(如随机擦除)的应用概率,用于模拟遮挡或增加模型的鲁棒性。 |
crop_fraction=1.0: 图像裁剪的比例,这里设置为1.0表示不进行裁剪。 |
cfg=None: 可能是指模型配置文件的路径,但这里设置为None表示没有额外指定(可能已经在其他地方指定了)。 |
tracker=botsort.yaml: 指定用于对象跟踪的配置文件(如果模型支持跟踪功能的话)。 |
save_dir=runs\train\exp4: 指定训练过程中模型权重、日志和其他输出文件的保存目录。 |
学习笔记———yolov11所有训练参数注释
最新推荐文章于 2025-05-19 12:47:55 发布