文本分类是自然语言处理(NLP)中的一项基础任务,应用范围从情感分析到内容分类。
传统上,它需要大量的数据预处理、特征工程和模型训练。大型语言模型的出现彻底改变了这一过程,提供了一种强大且高效的替代方案。
今天,我们将探讨如何使用大模型进行文本分类任务,并提供几个实际示例来展示如何实现它们。
大模型在文本分类中的优势
GPT-4o、Claude 3.5 等在文本分类方面有几个显著优势:
- 设置简便:大模型大大减少了对大量数据预处理和特征工程的需求。它们可以在没有特定领域特征训练的情况下理解文本的上下文和细微差别。
- 高性能:这些模型已经在海量数据上进行了预训练,使其能够在包括文本分类在内的许多NLP任务中达到最先进的性能。
- 少样本学习:通过在提示中注入少量示例,可以进一步提高性能。
- 多功能性:单个LLM可以通过微调或提示来执行各种文本分类任务,而不需要为每个任务准备单独的模型。
- 上下文理解:大模型擅长捕捉上下文信息,这对于复杂或模糊的文本分类尤其重要。
使用大模型实现文本分类
让我们看看如何使用大模型进行文本分类,并通过一些代码示例来说明。我们将通过OpenAI的GPT模型API展示二元分类和多类分类任务。
设置
首先,让我们设置我们的环境:
(1) 二元分类
让我们从一个简单的情感分析任务开始,这是一个二元分类问题:
这个示例展示了使用LLM进行二元分类的简便性。模型将根据输入文本的情感输出“正面”或“负面”。
(2) 多类分类
现在来看一个更具挑战性的多类分类案例,比如将新闻文章分类:
这个示例展示了大模型如何轻松处理多类分类任务,从预定义列表中选择一个类别。
(3) 多标签分类
大模型还能够进行多标签分类,为单个文本应用多个标签:
这个示例展示了大模型如何为给定文本输出多个相关标签,使其适用于标记系统或多标签分类任务。
(4) 带置信度评分的分类
对于更细致的分类,我们可以要求LLM为每个类别提供置信度评分:
这个示例展示了大模型如何提供更详细的分类结果,包括多个类别的置信度评分。
结论
大模型已经彻底改变了文本分类任务,为各种分类需求提供了灵活而强大的解决方案。正如这些示例所示,大模型可以通过最少的设置轻松处理二元、多类和多标签分类任务。
(完)
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
