大模型笔记 | 基于llama3.1 搭建知识库检索

llama3.1发布了,本文将基于最新的llama3.1搭建一套完整的自由知识库检索的案例,并将在后续的使用中逐步优化

1,准备知识库文档,放置到一个根目录中。

2,使用llama_index将文档加载,并调用分段器将文档分段。

3,选择向量化模型(Embedding),创建大模型交互上下文。

4,使用大模型上下文将文档段的集合建立索引。

5,准备大模型对话上下文。

6,使用大模型上下文将“问题”向量化。

7,基于引导词,驱动检索用户问题,利用相似性得分选择备选答案,将答案拟合润色为最终答案返回。

核心步骤及流程如下:

搭建自由知识库的总体架构是什么样的?

感谢各位勇士的提醒,先给出框架图。

图片

步骤一:文档都支持什么格式?pdf最好吗?

目前理论上所有可以ocr识别的内容,都是可以支持的,本文先以pdf为例,高级版本各位勇士需手动修改

下面是将指定文档目录作为知识库的根目录;并将内容加载到llamaIndex。

图片

步骤二:Embedding 词嵌入是必须的吗?不同的词嵌入有区别吗?为什么要吧Embedding 翻译为词嵌入?

词嵌入环节是必须的。

不同的词嵌入模型可能在向量化时会有不同的效果,尤其是特定专业特定行业时。

为什么把Embedding翻译为词嵌入,这个算是一个比较形象的表达了,你可以想象为一个苹果树上的苹果,苹果镶嵌在果树上,距离、位置、朝向都不同,跟这个感觉是类似的。

理论化一点的表述是:一种将文本数据表示为数值向量的技术,可以将其输入到机器学习模型中。嵌入模型负责将文本转换为这些向量。

图片

步骤三:数据库选型必须用向量数据库吗?向量数据库怎么选择?

理论上传统数据库也可以存储词嵌入计算后的向量值,就跟传统数据库用来存储的json数据、二进制数据是类似的。

但向量数据库有它更适合这个场景的优点,如距离计算、相似性检索、同时也保留了CRUD 操作、元数据过滤和水平缩放、索引等传统数据库技术。

默认情况下,LlamaIndex 使用简单的内存向量存储,非常适合快速实验。

图片

步骤四:创建提示词模板并问答

我们在本例中使用ollama加载llama3.1模型,在后续的版本优化模型调用时间

图片

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
  • 24
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值