基于大模型构建企业私有智能知识库落地的简单实践

​ 随着人工智能技术的飞速发展,大模型在企业知识管理中的应用日益广泛。下文是作者围绕如何基于大模型技术构建企业私有知识库,以提升企业的知识管理效率和创新能力的一些思考和简单实践。

​ 本文对企业知识库的落地场景暂不作广泛的展开,主要记录作者基于大模型构建企业私有知识库的一些技术实践。

一、私有知识库的应用场景

各行各业中有很多场景需要基于企业知识库进行搜索和问答:

\1. 构建装备维护知识库和问答系统:使用历史维保记录和维修手册构建企业知识库,维修人员可依靠该知识库,快速地进行问题定位和维修。

\2. 构建 IT/HR 系统智能问答系统:使用企业内部 IT/HR 使用手册构建企业知识库,企业内部员工可通过该知识库快速解决在 IT/HR 上遇到的问题。

\3. 构建电商平台的搜索和问答系统:使用商品信息构建商品数据库,消费者可通过检索+问答的方式快速了解商品的详细信息。

\4. 构建游戏社区自动问答系统:使用游戏的信息(例如游戏介绍,游戏攻略等)构建社区知识库,可根据该知识库自动回复社区成员提供的问题。

\5. 构建智能客户聊天机器人系统:通过与呼叫中心/聊天机器人服务结合,可自动基于企业知识库就客户提出的问题进行回复。

\6. 构建智能教育辅导系统:使用教材和题库构建不同教育阶段的知识库,模拟和辅助老师/家长对孩子进行教学。

二、 企业知识库的功能框架

图片

​ 最下面是 GPU 算力,包含两类,一类是推理的算力,另一类是微调的算力。中间这一层是安全可信的企业私域数据记忆体——多模向量数据库。

​ 再上一层整个技术层的功能点,包括模型微调的管理、知识文档管理、智能应用管理。

​ 最上面是偏业务场景类的需求,智能问答里可以自定义角色的一些对话、标准的 QA 问答,还有智能应用的 Agent,基于文档的辅助阅读、合同的审查、保险的个人助手。

三、企业知识库搭建

1、技术方案

GPUEZ:是国内算力提供商新秀**,平台提供丰富的大模型应用开发预置环境,**基于容器云构建,启动极快,能极大节省环境搭建的时间,平台的细节做的也很贴心,做GPU调度出身的更懂GPU需求,系统稳定,技术支持很及时,使用多家服务下来,他们是整体服务体验最好的一家。

图片

Ollama:是一款大型语言模型服务工具,它使得用户能够轻松部署和使用大语言模型 。

LLama3:是由Meta公司推出的新一代开源人工智能大语言模型。它具有强大的语言理解和生成能力,可以应用于多种自然语言处理任务,如文本摘要、问答系统、机器翻译等。

图片

MaxKB:是一款基于 LLM(Large Language Model)大语言模型-知识库问答系统(Max Knowledge Base)。

图片

2、搭建步骤

2.1 申请算力

登录gpuez.com网站,根据需要租用算力,这里建议选"按量计费",用多少就付多少,灵活便捷成本可控。成功创建实例后可以在用户中心看到:

在这里插入图片描述

点击“JupyterLab”进入实例,平台已经内置了python环境,可以通过输入

nvidia-smi

来检查GPU情况,正常和下图类似

在这里插入图片描述

2.2 安装Ollama

在 JupyterLab 的终端界面,输入以下命令,进行安装

curl -fsSL https://ollama.com/install.sh | sh

受容器环境限制,需手动启动服务

在这里插入图片描述

这样应该能看到,ollama 已经开始服务,并监听在默认的11434端口

2.3 运行Llama3

ollama run llama3

图片

出现上面界面表示ollama 已成功加载 llama3模型,现在可以输入问题,来让看看模型的回答效果了

图片

看起来一切正常,接着安装知识库管理系统

2.4 安装Maxkb 知识库管理系统

这里我们用Maxkb 的离线版安装,将Maxkb安装在本地,调用云端的算力,这样可以私有化部署来确保企业数据始终存在企业内部,商业信息不外泄。

在这里插入图片描述

图片

出现 1panel/maxkb 说明镜像导入成功,接下来启动服务,需注意版本和端口号

docker run -d --name=maxkb -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data 1panel/maxkb

默认登录信息

用户名:admin

默认密码:MaxKB@123…

登录成功后,在系统设置界面配置ollama的信息,如下

在这里插入图片描述

至此,知识搭建技术部份完成,接下是数据导入,和使用。

四、总结

​ 上面主要记录了基于GPUEZ搭建企业私有知识库的方法,实现了云-端的协同方案,即终端部署知识库管理,云端算力支持。该方案可以有效降低企业成本,同时能保障企业专有数据安全不外泄。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值