建立自己的ChatGPT:LLama私有化部署及测试_搭建自己的 llama模型

大语言模型(LLM)现在非常流行,可惜ChatGPT等都不开源。大家没法搭建一个自己的环境来感受以下。幸好Meta开源了LLama,这是LLama的介绍:

https://ai.facebook.com/blog/large-language-model-llama-meta-ai/

具体技术细节请看论文:

LLaMA: Open and Efficient Foundation Language Models

以 Meta 开源 LLaMA(直译为「大羊驼」)系列模型为起点,斯坦福大学等机构的研究人员先后在其上进行「二创」,开源了基于 LLaMA 的 Alpaca(羊驼)、Alpaca-Lora、Luotuo(骆驼)等轻量级类 ChatGPT 模型,大大降低了这类模型的研究、应用门槛,训练、推理成本一再降低。

近日,来自加州大学伯克利分校、卡内基梅隆大学、斯坦福大学、加州大学圣迭戈分校的研究者们又提出了一个新的模型 ——Vicuna(小羊驼)。这个模型也是基于 LLaMA,不过用到的是 13B 参数量的版本。

这个项目有趣的地方在于,作者在评测环节并没有通过某种「标准化考试」来测定模型性能(因为他们认为这些问题测不出模型在对话中的变通能力),而是让 GPT-4 当「考官」,看看 GPT-4 更倾向于 Vicuna-13B 还是其他基线模型的答案。结果显示,GPT-4 在超过 90% 的问题中更倾向于 Vicuna,并且 Vicuna 在总分上达到了 ChatGPT 的 92%。

经过他们优化后,大家也可以在自己的CPU环境上体验一下了。

LLama共有4种模型:

一般的笔记本也就只能玩得起7B和13B两种了。下面是我在CPU环境上的搭建过程。

模型下载地址:

eachadea/ggml-vicuna-13b-4bit · Hugging Face

运行程序可以使用LLAMA.cpp, github地址:

https://github.com/ggerganov/llama.cpp

可以直接下载编译后的程序:

https://github.com/ggerganov/llama.cpp/releases

随便选一个编译的解压(我用的llama-master-698f7b5-bin-win-avx2-x64.zip)并把模型文件放在同一个目录下

然后为了方便每次使用,写一个bat文件,内容如下:

@echo off
".\main.exe" -ins -m .\ggml-vicuna-13b-4bit-rev1.bin

直接执行这个Bat文件或者命令行执行这个命令都行。

效果如图:

7B的与13B的类似,就不重复说了。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### 如何在 Mac 上本地部署 ChatGPT 项目 #### 安装 Homebrew 必要工具 为了简化包管理安装过程,在 Mac M1 芯片环境下推荐使用 Homebrew 来管理依赖项。确保已经预先安装好了 Homebrew 工具。 ```bash /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" ``` 接着可以利用 Homebrew 安装 `llama.cpp` 库,这通常是构建类似 ChatGPT 这样的自然语言处理模型所必需的一部分[^1]: ```bash brew install llama.cpp ``` #### Python 环境设置与路径配置 对于 Python 开发者来说,保持正确的解释器版本非常重要。假设当前使用的 Python 版本为 3.8,则可以通过下面这条命令来更新系统的 PATH 变量以便能够访问该版本的 Python 解释器及其附带的工具链[^3]: ```bash export PATH="/Library/Frameworks/Python.framework/Versions/3.8/bin:${PATH}" ``` 建议将上述导出语句追加至个人 shell 配置文件(如 `.zshrc` 或 `.bash_profile`),从而实现每次启动终端时自动加载此环境变量设定。 #### 安装特定于项目的 Python 包 针对想要集成清华 ChatGLM 后端的情况,除了常规需求外还需要满足一些特殊的 Python 包依赖关系。这些额外组件可通过执行如下 pip 命令获取,注意前提是具备良好的 Python 编程基础以及足够的硬件性能支撑复杂计算任务的需求[^2]: ```bash python -m pip install -r request_llm/requirements_chatglm.txt ``` 这里假定存在名为 `request_llm` 的目录结构内含有指向所需库列表的文本文件 `requirements_chatglm.txt`。 #### 使用 Docker 提升跨平台兼容性 考虑到不同操作系统之间可能存在差异影响最终效果呈现的一致性问题,采用容器化技术不失为一种有效解决方案。Docker Compose 文件定义了一组服务描述符,允许开发者一次性声明多个关联的服务并指定它们之间的交互方式;这样做不仅有助于增强程序运行时稳定性还便于迁移整个工作负载到其他目标机器上去[^4]. 综上所述,完成以上各环节准备工作之后便可以在 macOS 平台上着手搭建属于自己的私有版 ChatGPT 实例了!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值