一、Dify介绍
Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中。
由于 Dify 内置了构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,并同时提供了一套易用的界面和 API。这为开发者节省了许多重复造轮子的时间,使其可以专注在创新和业务需求上。
官网:https://dify.ai/zh
官网文档地址:https://docs.dify.ai/zh-hans
github地址:
https://github.com/langgenius/dify
二、Dify 能做什么?
Dify 一词源自 Define + Modify,意指定义并且持续的改进你的 AI 应用,它是为你而做的(Do it for you)。
-
创业,快速的将你的 AI 应用创意变成现实,无论成功和失败都需要加速。在真实世界,已经有几十个团队通过 Dify 构建 MVP(最小可用产品)获得投资,或通过 POC(概念验证)赢得了客户的订单。
-
将 LLM 集成至已有业务,通过引入 LLM 增强现有应用的能力,接入 Dify 的 RESTful API 从而实现 Prompt 与业务代码的解耦,在 Dify 的管理界面是跟踪数据、成本和用量,持续改进应用效果。
-
作为企业级 LLM 基础设施,一些银行和大型互联网公司正在将 Dify 部署为企业内的 LLM 网关,加速 GenAI 技术在企业内的推广,并实现中心化的监管。
-
探索 LLM 的能力边界,即使你是一个技术爱好者,通过 Dify 也可以轻松的实践 Prompt 工程和 Agent 技术,在 GPTs 推出以前就已经有超过 60,000 开发者在 Dify 上创建了自己的第一个应用。
三、安装Dify最新版
一般采用DockerCompose来安装部署。
安装 Dify 之前, 请确保你的机器已满足最低安装要求:
-
CPU >= 2 Core
-
RAM >= 4 GiB
Dify支持各种操作系统,推荐使用Ubuntu操作系统来安装。
操作系统 | 软件 | 描述 |
---|---|---|
macOS | Docker Desktop | 为 Docker 虚拟机(VM)至少分配 2 个虚拟 CPU(vCPU) 和 8GB 初始内存,否则安装可能会失败。有关更多信息,请参考 《在 Mac 内安装 Docker 桌面端》 |
Linux | Docker 19.03 or later Docker Compose 1.28 or later | 请参阅安装 Docker 和安装 Docker Compose 以获取更多信息。 |
Windows | Docker Desktop | 我们建议将源代码和其他数据绑定到 Linux 容器中时,将其存储在 Linux 文件系统中,而不是 Windows 文件系统中。有关更多信息,请参阅使用 WSL 2 后端在 Windows 上安装 Docker Desktop。 |
1、下载最新源码到本地
也可以指定分支代码。目前最新版本为1.3.0 。
git clone https://github.com/langgenius/dify.git
2、复制配置文件
# 进入目录
cd dify/docker
# 复制 一份配置文件
cp .env.example .env
3、启动容器
一定要在这个目录 dify/docker里执行如下命令:
docker compose up -d
运行命令后,你应该会看到类似以下的输出,显示所有容器的状态和端口映射:
[+] Running 11/11
✔ Network docker_ssrf_proxy_network Created 0.1s
✔ Network docker_default Created 0.0s
✔ Container docker-redis-1 Started 2.4s
✔ Container docker-ssrf_proxy-1 Started 2.8s
✔ Container docker-sandbox-1 Started 2.7s
✔ Container docker-web-1 Started 2.7s
✔ Container docker-weaviate-1 Started 2.4s
✔ Container docker-db-1 Started 2.7s
✔ Container docker-api-1 Started 6.5s
✔ Container docker-worker-1 Started 6.4s
✔ Container docker-nginx-1 Started 7.1s
最后检查是否所有容器都正常运行:
docker compose ps
在这个输出中,你应该可以看到包括 3 个业务服务 api / worker / web,以及 6 个基础组件 weaviate / db / redis / nginx / ssrf_proxy / sandbox 。
NAME IMAGE COMMAND SERVICE CREATED STATUS PORTS
docker-api-1 langgenius/dify-api:0.6.13 "/bin/bash /entrypoi…" api About a minute ago Up About a minute 5001/tcp
docker-db-1 postgres:15-alpine "docker-entrypoint.s…" db About a minute ago Up About a minute (healthy) 5432/tcp
docker-nginx-1 nginx:latest "sh -c 'cp /docker-e…" nginx About a minute ago Up About a minute 0.0.0.0:80->80/tcp, :::80->80/tcp, 0.0.0.0:443->443/tcp, :::443->443/tcp
docker-redis-1 redis:6-alpine "docker-entrypoint.s…" redis About a minute ago Up About a minute (healthy) 6379/tcp
docker-sandbox-1 langgenius/dify-sandbox:0.2.1 "/main" sandbox About a minute ago Up About a minute
docker-ssrf_proxy-1 ubuntu/squid:latest "sh -c 'cp /docker-e…" ssrf_proxy About a minute ago Up About a minute 3128/tcp
docker-weaviate-1 semitechnologies/weaviate:1.19.0 "/bin/weaviate --hos…" weaviate About a minute ago Up About a minute
docker-web-1 langgenius/dify-web:0.6.13 "/bin/sh ./entrypoin…" web About a minute ago Up About a minute 3000/tcp
docker-worker-1 langgenius/dify-api:0.6.13 "/bin/bash /entrypoi…" worker About a minute ago Up About a minute 5001/tcp
通过这些步骤,本地成功安装 Dify 。 端口号默认是80 。可以打开http://localhost 进行体验了。
第一次打开,需要设置管理员账号密码。
4、Dify的网络拓扑图
四、安装Olama
1、安装Ollama
安装Ollama一般有2种方法,一键安装和手动安装。本次使用一键安装方式。
ubuntu服务器执行命令,安装和运行Ollama。
curl -fsSL https://ollama.com/install.sh | sh
这个命令需要科学上网,耗时较长。执行成功后,Ollama就会自动运行,随机自启。
2、下载LLM大模型
以DeepSeek-R1 1.5b为例,执行如下命令。
ollama run deepseek-r1:1.5b
就可以对大模型对话了。访问 127.0.0.1:11434查看Ollama的执行状态。也使用输入命令查看状态。
systemctl status ollama
3、开放外部访问
这种方式安装的ollama, 绑定的地址是127.0.0.1,只能在本地访问,无法在其他服务器访问。为了让外网能访问,需要将地址改为0.0.0.0. 编辑ollama的服务配置:
sudo systemctl edit --full ollama.service
需要在Environment里追加 "OLLAMA_HOST=0.0.0.0"。注意Envirinment的格式如下:
Environment="VAR1=value1" "VAR2=value2"
则我们在后面加空格,再加上键值对。
Ctrl+X, Y保存退出。重启服务
sudo systemctl daemon-reload
sudo systemctl restart ollama.service
这样ollama就可以在外网访问了。
五、安装vLLM
若Ollama和vLLM部署在同一台服务器上,则必须要将两者分在不同的显卡上。
六、Dify接入 Ollama
1、安装模型供应商
在 设置 > 模型供应商 >安装模型供应商,找到Ollama,并且点击“安装”,完成后,点击添加“模型”,模型类型有2种:LLM - 通用的自然语言大模型,Text Embedding-词嵌入大模型。
(1)如果使用大模型进行对话的,则选择LLM 。 模型名称需要选择Ollama已运行的大模型名称,不要填错了。可以使用ollama list命令查看本地已安装的大模型。
(2)基础URL,一定要填写 Dify容器内能访问到的地址;
(3)模型类型:对话 ;
(4)模型上下文长度:模型的最大上下文长度,若不清楚可填写默认值 4096。
(5) 最大 token 上限:4096
模型返回内容的最大 token 数量,若模型无特别说明,则可与模型上下文长度保持一致。
(6) 是否支持 Vision:否;
当模型支持图片理解(多模态)勾选此项,deepseek不支持,所以 否;
(7)是否支持函数调用:否;
当模型支持 Function Call,勾选此项。
点击“保存”即可。
2、Dify中选择Ollama对话
“工作台”--“创建空白应用”。应用类型:聊天助手
点击“创建”即可。跳到“编排”页面,右上角选择ollama配置的大模型即可。
自此,在Dify里我们就可以与大模型正常对话了。
七、接入vLLM推理模型
1、安装模型供应商
操作方法与Ollama类似,选择 模型供应商选择 “vLLM”,或者“OpenAI-API-compatible” ;这2个都可以。若是想接入LMDeploy,选择“OpenAI-API-compatible”进行安装。
模型名称:vLLM启动时候带的大模型地址,或vLLM指定的大模型名称。
API endPoint URL:地址后带上 /v1 。
其他参数保持默认即可。
2、Dify中选择vLLM对话
编排界面--右上角大模型选择,可以选择vLLM,点击“发布”就可以了。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓