视频HDR->LDR/SDR(Video Tone Mapping问题)之Real-time noise-aware tone mapping论文阅读笔记

本文提出了一个视频色调映射(VTM)算法,解决了时域一致性和实时处理的问题。通过噪声感知的色调映射曲线(TC)设计,实现了对视频噪声的有效控制,同时保证了显示端的适应性。算法采用局部TC来增强细节并减少闪烁,通过低通滤波确保时间一致性。此外,通过对比度失真最小化优化问题,实现了对比度的精确调整。这种方法提高了VTM的质量,适用于实时视频处理。

老规矩,先给出算法结果预览和算法flow map

该算法在VTM领域比较有影响力。VTM问题和图像TM问题最大的区别在于,对视频进行处理的时候需要考虑到时域的一致性问题。在以往的算法中,很多方法都是用一些时域的约束或者滤波来进行求解的,这就不可避免地要用到一些关于未来的帧的信息,这导致VTM问题从本质上没有办法real time执行,而只能通过post process的方法来进行。

本篇文章提出的方法很好地克服了这个问题。

目录

3 Approach overview

3.1 TM中的噪声

3.2 显示端的适应性

4 TC

 4.1 对比度失真

4.2 最优化问题

4.3 噪声和内容感知的TC

4.4 时间一致性

4.5 local Tone curves

5 TM的滤波器设计

6 Noise-aware local contrast control


3 Approach overview

方法的流程图整个就如上图所示。

算法有三个需求:1、噪声建模(也即标题中的noise aware)。2、时域一致性。3、显示端的自适应。

算法具体也可以分为三个模块:图中的三个白框

1、边缘截止的空域滤波

2、基于local的色调映射曲线(TC)

3、基于噪声感知的图像细节控制

3.1 TM中的噪声

视频降噪算法已经是比较成熟的一个领域了。因为过高的去噪强度回引入运动模糊,所以一般来讲回使用保守的降噪,然后再color grading中手动隐藏剩余的噪声。再本文中,作者提出了一种通过噪声感知色调映射来自动化后一步(隐藏剩余噪声)的方法。

具体而言,是在计算TC,以及保留对比度和细节的时候。

为了控制噪声,需要对噪声进行建模。数码相机中噪声的方差可以建模为光强度 I 的函数

其中a和b是噪声的信号相关(光子噪声)和信号无关(读出噪声)分量的参数。这个参数一般是相机模型中给出的。

考虑到视觉系统对光的非线性敏感性(韦伯-费希纳定律),我们将在对数域中进行操作。对数域中的噪声幅度可以近似为:

然后我们观察下图

式子2描述的就是红线代表的噪声。

蓝线代表人类的视觉噪声阈值:噪声比蓝线大,则能看出来,否则是看不出来有噪声的。这条蓝线由对比度敏感度函数(CSF)在每个照明度Ld下的peak值给出。(即,CSF本身在每个Ld下都是一个独立的函数。这条蓝线是在每个Ld下,都取峰值后连起来的函数。

此外,还有一个值:人眼在(对数域)各个亮度等级下能够分辨的最小亮度差距:

其中,Ct(Ld) = 1 / CSF(Ld)

3.2 显示端的适应性

这一节考虑到环境光会降低屏幕的显示对比度。用了一个模型来进行修正(这是显示端的后处理了)

其中Ld输出亮度,L'是像素值,γ是伽马值,Lmax是峰值显示亮度,Lblack是黑电平,Lrefl是照到显示器表面的环境光,近似如下:

 其中Eamb是环境光强度(lux),k是显示面板的反射率。

4 TC

本文用到的TC是基于local的TC。

为了解析化这个问题,将TC参数化为一个具有多个节点的分段线性函数,如下图:

注意坐标轴中的亮度值是对数域的。每个节点由(lk, vk)表示,lk表示输入的HDR

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值