目录
一、引言
1.1 YOLO系列算法的引言
随着深度学习和计算机视觉技术的不断发展,目标检测作为计算机视觉领域的一个重要任务,得到了广泛的应用。目标检测算法旨在识别图像或视频中的目标物体,并为其定位,是许多应用场景的关键前置任务。然而,传统的目标检测算法通常存在计算量大、运行速度慢、实时性差等问题,这限制了它们的实际应用。为了解决这些问题,YOLO系列算法应运而生。
YOLO(You Only Look Once)是一种高效、实时的目标检测算法,旨在提高目标检测的速度和准确性。与传统的目标检测算法不同,YOLO将目标检测任务转化为一个回归问题,通过一个单一的神经网络对整个图像进行处理,从而避免了传统算法中繁琐的特征提取和匹配步骤。此外,YOLO采用了一个多尺度特征融合的方法,能够更好地捕捉不同大小的目标特征,提高目标检测的准确性。
自2016年提出以来,YOLO系列算法不断演进和发展,成为了目标检测领域的重要参考算法之一。随着计算能力的提升和新型网络结构的出现,YOLO系列算法的性能和速度也不断提