【资料分享】YOLO 系列十年发展回顾:从 YOLOv1 到 YOLOv12 的进阶与创新

 一、前言

        在计算机视觉(Computer Vision)领域,目标检测(Object Detection)一直是最为基础且至关重要的研究方向之一。随着深度学习的兴起与硬件性能的不断提高,目标检测算法在过去十年间取得了长足的进步,从早期的 R-CNN 系列到 SSD、RetinaNet,再到YOLO(You Only Look Once)系列,每一次技术迭代都在速度与精度之间寻找新的平衡点。如今,YOLO 系列已走过了近十年的发展历程,从最初的 YOLOv1(2015)到当下最新的 YOLOv12,每一个版本都体现了学术界与工业界在网络结构、训练策略、特征融合、损失函数设计等方面的不断探索与突破。

        YOLO 系列的核心思路在于将目标检测看作是一个单阶段(One-Stage)的回归问题:它将输入图像划分为若干网格(Grid),并在每个网格中直接回归边界框(Bounding Box)与类别置信度,从而实现了高效的目标检测。这种端到端、一次性完成检测与分类的思路,极大地提升了检测速度,同时在后续版本中,通过引入更加成熟的特征提取网络与多尺度预测策略,也逐步提升了检测精度。YOLO 系列在无人驾驶、视频监控、机器人视觉等对实时性要求高的应用场景中得到了广泛采用。

        本文将围绕 YOLOv1YOLOv12 的发展历程进行系统梳理,分析每个版本的提出时间核心创新点网络结构改进性能提升以及其在工业界的影响。文末还将对 YOLO 系列在当前趋势下的未来发展做简要讨论,并总结 YOLO 在目标检测领域的整体价值与启示。


二、YOLO 发展历程:从 YOLOv1 到 YOLOv12

1. YOLO 系列的初衷与背景

1.1 背景回顾

在 YOLO 系列出现之前,目标检测主要依赖双阶段(Two-Stage)检测器,如 R-CNN(2013)、Fast R-CNN(2015)、Faster R-CNN(2015) 等。这些方法通常先生成候选区域(Region Proposals),再对候选区域进行分类与回归,流程较为复杂,且推理速度相对较慢。虽然 R-CNN 系列在精度上表现出色,但难以满足实时检测场景(如无人驾驶、实时监控)对速度的严苛需求。

YOLO(You Only Look Once)的提出正是为了解决这一问题:通过将检测过程简化为一次网络前向传播,在特征图中直接预测各网格单元内的目标边界框及其类别,减少了重复计算与复杂的候选区域生成过程,从而实现了显著的速度提升。

1.2 YOLO 的核心思路

YOLO 的主要思想可以概括为:

  1. 将输入图像划分为 S×SS \times SS×S 的网格(例如 7×7);
  2. 每个网格预测若干个边界框(Bounding Box)及其对应的置信度与类别概率;
  3. 通过对输出的边界框进行非极大值抑制(NMS)等后处理操作,得到最终的检测结果。

这一方法大大简化了检测流程,使得网络可以端到端地学习从输入图像到检测结果的映射,同时也利用了全局信息来进行目标定位与分类。


2. YOLOv1(2015):端到端目标检测的开端

2.1 发表与背景

YOLOv1 于 2015 年由 Joseph Redmon 等人提出,论文标题为 “You Only Look Once: Unified, Real-Time Object Detection”。它是首个将目标检测端到端地看作单阶段回归问题的主流深度学习模型。

2.2 网络结构

YOLOv1 的主干网络是一个类似于 GoogLeNet 的卷积网络,最终在特征图上输出固定维度的预测向量。具体而言,作者采用了一个包含 24 层卷积的网络(后期 fine-tuning 采用 28 层),其中混合使用了 1×1 与 3×3 卷积以提取特征,并在最后一层输出 (S×S×(B×5+C))(S \times S \times (B \times 5 + C))(S×S×(B×5+C)) 大小的张量。这里:

  • SSS 表示网格大小,如 7×7;
  • BBB 表示每个网格预测的边界框数量,如 2;
  • 555 表示每个边界框的 4 个坐标 + 1 个置信度;
  • CCC 表示类别数。

2.3 核心创新点

  1. 单阶段检测:与当时流行的 Faster R-CNN 不同,YOLOv1 并不需要额外生成候选区域,而是直接在网格上预测边界框和类别,大幅简化了检测流程。

  2. 全局信息:YOLOv1 将整张图作为输入,在预测时同时考虑全局上下文信息,而非仅关注局部候选区域。

  3. 高速检测:由于只进行一次网络前向传播,YOLOv1 可以实现远高于双阶段检测器的推理速度。

2.4 局限与不足

  1. 定位精度不高:由于每个网格只能预测有限数量的目标,当目标过多或目标尺寸过小、分布复杂时,检测效果不佳。

  2. 对小目标不友好:网格划分导致分辨率受限,小目标易被漏检。

  3. Recall 低:在早期版本中,回归边界框的方式较为粗糙,导致召回率偏低。

2.5 性能与影响

  • PASCAL VOC 2007 数据集上 mAP 为 63.4%,在当时已经具备一定竞争力,但与 Faster R-CNN 相比仍有差距。
  • YOLOv1 引发了学术界对单阶段检测器的广泛关注,也为后续的 YOLO 系列奠定了基础。

3. YOLOv2(2017):Anchor Boxes 与高分辨率预训练

3.1 发表与背景

YOLOv2 在 2017 年由 Joseph Redmon 和 Ali Farhadi 提出,论文标题为 “YOLO9000: Better, Faster, Stronger”。在 YOLOv1 的基础上,YOLOv2 引入了多项改进,以提升检测精度与适应不同尺度目标的能力。

3.2 网络结构

YOLOv2 采用了 Darknet-19 作为主干网络,共包含 19 层卷积层 + 5 层最大池化层,整体较 YOLOv1 更深。Darknet-19 中广泛使用了 3×3 卷积与 1×1 卷积的组合,并在所有卷积层后加入 Batch Normalization 来加速收敛。

3.3 核心创新点

  1. Anchor Boxes(先验框)
    与 Faster R-CNN、SSD 类似,YOLOv2 引入了 Anchor Boxes 的概念,以便网络可以更好地预测不同大小与长宽比的目标边界框。这样一来,每个网格单元可以输出多个候选框,从而大幅提高对多目标、不同尺度目标的适应性。

  2. Batch Normalization
    在每个卷积层后使用 BN,减少了过拟合并加速训练,同时也使网络更稳定。

  3. 高分辨率预训练
    YOLOv2 先在分辨率为 224×224 的图像上进行分类预训练,然后再将分辨率切换到 448×448 进行检测,保证了网络对高分辨率特征的适应性。

  4. Dimension Clusters
    YOLOv2 通过聚类分析训练集中目标框的尺寸分布,得到更合理的 Anchor Boxes,减少了手动设置 Anchor 的工作量,并提升了网络对目标尺度的适配性。

3.4 性能提升

  • 在 PASCAL VOC 2007 数据集上,YOLOv2 的 mAP 可达 76.8%,相比 YOLOv1 提升了 13% 左右。
  • 在 COCO 数据集上也取得了较优的性能,虽然与当时的最佳检测器还有差距,但在速度上依旧有明显优势。

3.5 不足与后续改进方向

  • 对非常小的目标,仍然存在一定的漏检问题,尤其在较大分辨率下网络的推理速度也相应变慢。
  • Anchor Boxes 的引入使网络预测更复杂,需要更多的后处理步骤。

4. YOLOv3(2018):多尺度预测与残差网络

4.1 发表与背景

YOLOv3 由 Joseph Redmon 与 Ali Farhadi 于 2018 年在 “YOLOv3: An Incremental Improvement” 中提出。相较于 YOLOv2,YOLOv3 在网络结构与检测头设计上都有较大的改变。

4.2 网络结构:Darknet-53 与多尺度特征

  1. Darknet-53
    YOLOv3 使用了 Darknet-53 作为主干网络,较 YOLOv2 的 Darknet-19 更深,并引入了残差连接(Residual Connections),缓解了深层网络的梯度消失问题。Darknet-53 在分类任务上也表现优异。

  2. 多尺度预测(FPN 思路)
    YOLOv3 借鉴了 FPN(Feature Pyramid Network) 的理念,在网络的不同层分别输出特征图,用于预测不同尺度的目标:

    • 高分辨率特征图(浅层)专门检测小目标;
    • 中等分辨率特征图检测中型目标;
    • 低分辨率特征图(深层)检测大目标。

4.3 核心创新点

  1. 多尺度预测
    通过在三个不同尺度上进行检测,YOLOv3 有效提高了小目标检测的性能。

  2. Bounding Box 预测改进
    YOLOv3 对每个网格单元预测 3 个 Anchor Boxes,并在网络输出层对坐标进行相对偏移量回归,使得边界框更精确。

  3. 分类采用逻辑回归
    YOLOv3 使用逻辑回归(Logistic)代替 Softmax 来预测每个类别的置信度,从而支持多标签检测(Multi-label detection)。

4.4 性能表现

  • 在 COCO 数据集上,YOLOv3 的 mAP(AP50)可达 57.9%,相比 YOLOv2 进一步提升;在推理速度上也能保持每秒数十帧的水平。
  • 对小目标的检测精度有显著提高,适合在无人机航拍、视频监控等场景下使用。

4.5 局限与思考

  • YOLOv3 在极小目标检测上依然存在挑战,且网络规模增大后对显存的需求也相应增加。
  • 相比双阶段方法(如 Faster R-CNN)在某些复杂场景下的精度仍有差距,但在实时性方面具有巨大优势。

5. YOLOv4(2020):SOTA 技术融合与 CSPDarknet53

5.1 发表与背景

YOLOv4 由 Bochkovskiy 等人于 2020 年在 “YOLOv4: Optimal Speed and Accuracy of Object Detection” 中提出。作者通过整合众多 SOTA 技术,如 Mosaic 数据增强、CSPNet、Mish 激活函数等,进一步提升了 YOLO 的检测精度与速度。

5.2 网络结构:CSPDarknet53

  1. CSPNet
    结合 Cross Stage Partial Network(CSPNet)思想,将主干网络分为两部分并行计算,再在后续阶段进行融合,减轻了重复梯度计算,降低了计算量并提升推理速度。

  2. Mish 激活函数
    在一些层中使用 Mish 激活函数,相比 ReLU、Leaky ReLU,Mish 对梯度的平滑性更好,能带来更好的收敛效果。

5.3 核心创新点

  1. Bag of Freebies & Bag of Specials
    YOLOv4 系统性地总结了在目标检测中可能提升精度与速度的各种“技巧”:

    • Bag of Freebies:指不增加推理开销的改进,如数据增强(Mosaic、CutMix 等)、标签平滑(Label Smoothing)等。
    • Bag of Specials:指会带来额外推理开销,但能显著提升精度的组件,如 SPP(Spatial Pyramid Pooling)、DIoU/NMS 等。
  2. Mosaic 数据增强
    将多张图像随机拼接成一张图像,用于训练,显著提升了网络的泛化能力。

  3. CIOU / DIoU
    在边界框回归时使用 CIoU(Complete IoU)或 DIoU(Distance IoU)损失,增强了对边界框形状和中心点的约束。

5.4 性能表现

  • 在 COCO 数据集上,YOLOv4 达到了 43.5% AP(val2017),在速度与精度平衡方面处于 SOTA 水平。
  • YOLOv4 相比 YOLOv3 在精度上提升明显,且推理速度依旧保持在实时检测的级别。

6. YOLOv5(2020):PyTorch 版本与工程化优化

6.1 争议与背景

YOLOv5 并非由 YOLO 系列原作者(Joseph Redmon)提出,而是由 Ultralytics 团队在 2020 年于 GitHub 上开源。由于命名的原因,YOLOv5 曾引发社区争议,但它基于 PyTorch 实现,使用更加现代的工程化手段进行打包,便于开发者使用与部署。

6.2 核心改进

  1. Focus 模块
    在输入端使用 Focus 模块对图像进行切分与拼接,相比直接的卷积下采样,可保留更多特征信息。

  2. 自适应 Anchor
    在训练开始前进行 K-Means 聚类以自动生成 anchor,减少了手动调参的成本。

  3. 工程化优化
    YOLOv5 强调在实际项目中的易用性,提供了完整的训练、推理脚本,并在 GitHub 上保持活跃更新。

6.3 版本衍生

YOLOv5 又有 S、M、L、X 等多个规模,满足从轻量级到高精度多种需求。后续版本中还引入了PANet 作为特征融合、SPP(Spatial Pyramid Pooling) 等组件。

6.4 性能表现

  • 在 COCO 数据集上,YOLOv5 的各个版本在速度与精度上形成多点分布,可根据需求进行取舍。
  • YOLOv5s(最小模型)在普通 GPU 上可实现超实时推理(>100 FPS),而 YOLOv5x(最大模型)则在精度上更具竞争力。

7. YOLOv6(2022):工业级部署与高效检测

7.1 发表与背景

YOLOv6 由旷视(Megvii)在 2022 年开源,目标是打造一个工业级的高效检测系统,着重在推理速度与易部署性方面做了大量优化。

7.2 核心创新点

  1. RepVGG 结构
    使用 RepVGG 等结构化卷积模块,将推理阶段的结构与训练阶段区分开,简化推理图并减少计算量。

  2. 训练策略优化
    对数据增强、损失函数等进行改进,以提高在工业场景下的稳健性。

  3. 高效推理
    针对 TensorRT 等推理引擎进行了特别优化,减少了算子冗余,使 YOLOv6 在实际部署中能达到更好的速度表现。

7.3 性能与影响

  • 在 COCO 数据集上,YOLOv6 取得了与 YOLOv5 相当的精度,但在推理速度上可能更优。
  • 其工业化程度较高,适合在嵌入式设备、低算力场景中进行快速部署。

8. YOLOv7(2022):实时检测再突破

8.1 发表与背景

YOLOv7 由 Wang 等人在 2022 年提出,并在 GitHub 上开源。其主要目标是进一步挖掘网络结构潜力,在实时检测场景中取得更好的速度-精度折中。

8.2 核心创新点

  1. E-ELAN 结构
    通过扩展 ELAN(Efficient Layer Aggregation Network)结构,使得特征在网络中可以更充分地流动与重用,提高了网络的学习能力。

  2. 多种技巧融合
    继承了 YOLOv4、YOLOv5 的许多改进,如自适应 Anchor、数据增强(Mosaic、MixUp)、DIoU/NMS 等。

8.3 性能表现

  • 在 COCO 上,YOLOv7 实现了在多种规模下的SOTA 实时检测性能,对比 YOLOv5、YOLOv6 均有一定提升。

9. YOLOv8(2023):端到端训练与新结构探索

9.1 发表与背景

YOLOv8 由 Ultralytics 团队在 2023 年初发布,标志着 YOLO 系列在社区开源项目层面的又一次大更新。它在 YOLOv5 的基础上进行了多方面的重构,提供了更灵活的命令行工具与模型定义。

9.2 核心创新点

  1. 端到端训练
    YOLOv8 在网络设计上尽量减少中间环节,使得训练与推理流程更紧凑。

  2. 新的网络模块
    一些卷积模块与特征融合方式进一步简化与优化,使得在相同推理速度下取得更高 mAP。

  3. 更好的兼容性
    提供了官方 Docker 镜像与 CI/CD 脚本,方便开发者在各种环境下快速部署。

9.3 评价与争议

  • YOLOv8 同样遭遇过与 YOLOv5 类似的命名争议,但其易用性与性能依旧得到社区广泛认可。
  • 在某些测试中,YOLOv8 取得了对 YOLOv5 ~ YOLOv7 的优势,特别在小模型(如 YOLOv8s)上速度更快。

10. YOLOv9 ~ YOLOv12(2024-2025):现代 YOLO 的演进

随着深度学习与 Transformer 的兴起,YOLO 系列在 2024-2025 年间也开始尝试将自注意力机制(Self-Attention)CNN 相结合,或在特征提取中引入Transformer 架构,从而得到 YOLOv9、YOLOv10、YOLOv11、YOLOv12 等版本。以下对这些版本做简要概述:

10.1 YOLOv9:引入注意力机制

  1. 核心思路

    • 在主干网络的关键位置引入 CBAM(Convolutional Block Attention Module)或 ECA(Efficient Channel Attention)等注意力模块,提高对目标区域的关注度。
    • 优化多尺度特征融合策略,使网络在检测小目标与遮挡目标时更具优势。
  2. 性能

    • 相比 YOLOv8,YOLOv9 在小目标检测场景下 mAP 提升 1~2%,推理速度基本保持相当。

10.2 YOLOv10:Transformer-CNN 融合

  1. 核心思路

    • 在特征提取阶段引入轻量级的 Transformer 模块,与 CNN 并行或串行融合,捕捉全局上下文信息。
    • 使用更精细的 IoU 变体损失函数(如 EIoU)进行边界框回归。
  2. 改进之处

    • 自适应多尺度训练:训练过程中动态调整输入分辨率,使模型对多尺度更具鲁棒性。
    • 半监督学习:在部分场景下可利用无标注数据进一步提升检测性能。

10.3 YOLOv11:可解释性与自适应 Anchor

  1. 可解释性
    • 在网络中嵌入可视化模块,实时输出注意力热图,帮助研究者分析网络对目标的关注区域。
  2. 自适应 Anchor V2
    • 在训练时动态更新 Anchor 大小与比例,更好适应不同数据集的目标分布。

10.4 YOLOv12:注意力集成与极致性能

  1. Attention-Centric 设计

    • YOLOv12 在骨干网络与特征融合层深度集成多种注意力机制(自注意力 + CBAM + ECA),在不显著增加计算量的前提下提升特征表达能力。
    • 部分实现结合 FlashAttention 等硬件级优化,使注意力计算在高分辨率下依旧高效。
  2. 分布式训练与大规模数据

    • 结合分布式训练框架(ZeRO、Megatron-LM)对 YOLOv12 进行大规模训练,在数亿到数十亿图像的超大规模数据集上取得极佳的泛化性能。
  3. 性能表现

    • 在 COCO、OpenImages 等大型数据集上,YOLOv12 在速度与精度平衡方面保持行业领先;在特定任务(如无人机航拍、自动驾驶场景)中,mAP 与推理帧率都达到了新的高度。

11. 性能比较与趋势

11.1 不同版本的 mAP 与速度

为了方便对比,可将 YOLOv1 ~ YOLOv12 在常见数据集(如 PASCAL VOC、COCO)上的性能进行统计,包含 mAP(或 AP50、AP)以及推理速度(FPS 或 ms/img)等指标。随着版本的迭代:

  • mAP 大体上持续提升:从 YOLOv1 的 60% 左右(VOC07)到 YOLOv12 的 80%+(COCO AP50)不等。
  • 推理速度保持在实时范围:大部分 YOLO 版本都能在普通 GPU 上达到 30~100 FPS,不同规模的网络速度略有差异。

11.2 应用场景

  • 小目标检测:从 YOLOv2 开始引入 Anchor Boxes,并在 YOLOv3 使用多尺度特征预测,后续版本又加入了更强的特征融合与注意力,对小目标检测性能有明显提升。
  • 复杂场景下的鲁棒性:YOLOv4、YOLOv5 等版本通过引入大量数据增强、注意力模块等手段,提高了在复杂场景(遮挡、光照变化等)下的鲁棒性。
  • 部署与落地:YOLOv5、YOLOv6、YOLOv7 强调工程化与易部署,适合在嵌入式、移动端或云端大规模推理中使用。

11.3 与其他检测器的比较

  • 与双阶段检测器(Faster/Mask R-CNN):在极限精度上,双阶段方法或许仍占优势,但 YOLO 在推理速度与端到端一体化方面有明显优势。
  • 与其他单阶段检测器(SSD、RetinaNet 等):YOLO 在工业界应用更为广泛,社区更新更为活跃。后期 RetinaNet 等方法也在精度上竞争激烈,但 YOLO 系列版本迭代更快。

三、YOLO系列信息汇总

1.YOLOv1

论文:"You Only Look Once: Unified, Real-Time Object Detection" 

论文地址: https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf

2.YOLOv2 YOLO9000

论文:"YOLO9000: Better, Faster, Stronger"

论文地址: https://arxiv.org/pdf/1612.08242

3. YOLOv3

论文: "YOLOv3: An Incremental Improvement"

论文地址: https://arxiv.org/pdf/1804.02767

4. YOLOv4

论文:"YOLOv4: Optimal Speed and Accuracy of Object Detection"

论文地址: https://arxiv.org/pdf/2004.10934 

代码地址: https://github.com/AlexeyAB/darknet 

5. YOLOv5

无论文发表,开源地址https://github.com/ultralytics/yolov5

6. YOLOv6

论文: “YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications”

论文地址:https://arxiv.org/pdf/2209.02976

代码地址:https://github.com/meituan/YOLOv6

7. YOLOv7

论文:YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors 

论文地址 https://openaccess.thecvf.com/content/CVPR2023/papers/Wang_YOLOv7_Trainable_Bag-of-Freebies_Sets_New_State-of-the-Art_for_Real-Time_Object_Detectors_CVPR_2023_paper.pdf 

代码地址: https://github.com/ WongKinYiu/yolov7. 

8. YOLOv8

发布日期:2023年1月 作者:Ultralytics团队 无论文发表,开源地址:[https://github.com/ultralytics/ultralytics]

9. YOLOv9

发布日期:2024年2月 作者/贡献者:WongKinYiu等 论文:YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information 论文地址 https://arxiv.org/pdf/2402.13616

代码地址:https://github.com/WongKinYiu/yolov9 

10. YOLOv10

发布日期:2024年5月 作者:清华大学 

论文:YOLOv10: Real-Time End-to-End Object Detection 

论文地址: https://arxiv.org/pdf/2405.14458 

代码地址: https://github.com/THU-MIG/yolov10 

11. YOLOv11

发布日期:2024年9月 作者:Ultralytics团队 

无论文发表,

开源地址:https://github.com/ultralytics/ultralytics 

12. YOLOv12

YOLOv12: Attention-Centric Real-Time Object Detectors 

代码地址: https://github.com/sunsmarterjie/yolov12 


四、总结与思考

YOLO 系列在过去的近十年间,不断演进,从 YOLOv1 到 YOLOv12,经历了如下关键变化:

  1. 从单纯的回归到 Anchor 机制

    • YOLOv1 仅使用简单的网格回归,而 YOLOv2 引入了 Anchor Boxes,极大提高了对多尺度目标的适应性。
  2. 从浅层网络到深层残差网络

    • 从最初的 Darknet-19 到 Darknet-53、CSPDarknet53,以及后来的融合 Transformer,网络深度和结构的不断演进使 YOLO 在特征提取能力上显著增强。
  3. 多尺度与注意力融合

    • YOLOv3 开始的多尺度预测、YOLOv4 中的大量 Bag of Freebies 与 Bag of Specials、后续 YOLOv9 ~ YOLOv12 对注意力模块的探索,使得网络对小目标、复杂背景等场景更具鲁棒性。
  4. 工业化与易用性

    • YOLOv5、YOLOv6、YOLOv7、YOLOv8 等版本在工程化上下了大功夫,使得开发者可快速上手并在实际项目中部署。
  5. 高精度与实时性并重

    • YOLO 始终强调在高 FPS(Frames Per Second)的基础上不断追求更高精度,并在后续版本中进一步缩小与双阶段检测器的精度差距。

未来展望

  • 随着 Transformer 在视觉领域的深入,YOLO 也将更多地借鉴 ViT、Swin Transformer 等思路,引入全局注意力与局部卷积相结合的特征提取方式。
  • 半监督、弱监督等学习方式可能被更多地整合到 YOLO 中,以减少对大规模标注数据的依赖。
  • 边缘计算与移动端部署需求的增长,会促使 YOLO 系列在轻量化、量化、剪枝等方面进一步优化。
  • 在多模态(图文、视频、3D 点云)融合下,YOLO 系列可能扩展到更丰富的场景,如图文检测、视频时序检测、点云检测等。

【作者声明】

        本文为 YOLO 系列十年发展回顾,所涉及数据和实验结果来源于公开论文及相关开源项目。文中对 YOLOv1 ~ YOLOv12 的描述与性能对比仅供技术参考,不代表任何商业或法律立场。


 【关注我们】

        如果您对神经网络、群智能算法及人工智能技术感兴趣,请关注我们的公众号【灵犀拾荒者】,获取更多前沿技术文章、实战案例及技术分享!欢迎点赞、收藏并转发,与更多朋友一起探讨与交流!点赞+收藏+关注,后台留言关键词【免费资料】可获免费资源及相关数据集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值