【线性代数笔记】正定矩阵及其性质

定义(正定二次型与正定矩阵) f ( x ) = x T A x f(\bm{x})=\bm{x}^TA\bm{x} f(x)=xTAx是一个 n n n元二次型,如果对于任意非零向量 x = ( x 1 , x 2 , … , x n ) T ∈ R n \bm{x}=(x_1,x_2,\dots,x_n)^T\in \bm{R}^n x=(x1,x2,,xn)TRn,都有 x T A x > 0 \bm{x}^TA\bm{x}>0 xTAx>0,则称 f f f为正定二次型,并称实对称矩阵 A A A为正定矩阵。
定义(半正定、负定、半负定、不定)
(1) 半正定: ∀ x ∈ R n \forall \bm{x}\in \bm{R}^n xRn x ≠ 0 \bm{x}\ne0 x=0,都有 x T A x ≥ 0 \bm{x}^TA\bm{x}\ge 0 xTAx0,且 ∃ x 0 ≠ 0 \exists \bm{x}_0\ne 0 x0=0,使得 x 0 T A x 0 = 0 \bm{x}_0^TA\bm{x}_0=0 x0TAx0=0
(2) 负定: ∀ x ∈ R n \forall \bm{x}\in \bm{R}^n xRn x ≠ 0 \bm{x}\ne0 x=0,都有 x T A x < 0 \bm{x}^TA\bm{x}< 0 xTAx<0
(3) 半负定: ∀ x ∈ R n \forall \bm{x}\in \bm{R}^n xRn x ≠ 0 \bm{x}\ne0 x=0,都有 x T A x ≤ 0 \bm{x}^TA\bm{x}\le 0 xTAx0,且 ∃ x 0 ≠ 0 \exists \bm{x}_0\ne 0 x0=0,使得 x 0 T A x 0 = 0 \bm{x}_0^TA\bm{x}_0=0 x0TAx0=0
(4) 不定: x T A x \bm{x}^TA\bm{x} xTAx既能取到正值,又能取到负值。

定理1 二次型经可逆线性变换,其正定性不变。
即:设 x = C y \bm{x}=C\bm{y} x=Cy C C C可逆,则 x T A x \bm{x}^TA\bm{x} xTAx y T A y \bm{y}^TA\bm{y} yTAy正定性一致。
等价于:若实对称矩阵 A A A B B B合同(存在可逆矩阵 C C C使得 C T A C = B C^TAC=B CTAC=B),则 A A A B B B的正定性一致。

定理2 n n n阶实对称矩阵 A A A为正定矩阵 ⟺ \Longleftrightarrow A A A的所有特征值都大于 0 0 0

推论 n n n元二次型 f f f是正定二次型 ⟺ \Longleftrightarrow f f f的正惯性指数为 n n n

定理3 实对称矩阵 A A A为正定矩阵 ⟺ \Longleftrightarrow ∃ \exists 可逆矩阵 M M M,使得 A = M T M A=M^TM A=MTM

推论 A A A为正定矩阵,则 det ⁡ ( A ) > 0 \det(A)>0 det(A)>0

推论 A A A为正定矩阵当且仅当它与单位矩阵合同。

推论 A A A为正定矩阵,则 ∃ \exists 正定矩阵 S S S使 A = S 2 A=S^2 A=S2
证明
∵ A \because A A为正定矩阵
∴ A \therefore A A的特征值 λ 1 , λ 2 , … , λ n \lambda_1,\lambda_2,\dots,\lambda_n λ1,λ2,,λn均大于 0 0 0,且 ∃ \exists 正交矩阵 P P P,使得 A = P Λ P T A=P\Lambda P^T A=PΛPT,其中 Λ = diag ( λ 1 , λ 2 , … , λ n ) \Lambda=\text{diag} (\lambda_1,\lambda_2,\dots,\lambda_n) Λ=diag(λ1,λ2,,λn)
Λ ′ = diag ( λ 1 , λ 2 , … , λ n ) \Lambda'=\text{diag} (\sqrt{\lambda_1},\sqrt{\lambda_2},\dots,\sqrt{\lambda_n}) Λ=diag(λ1 ,λ2 ,,λn ),则 Λ ′ 2 = Λ \Lambda'^2=\Lambda Λ2=Λ A = P Λ ′ Λ ′ P T = P Λ ′ P T P Λ ′ P T = ( P Λ ′ P T ) 2 A=P\Lambda'\Lambda'P^T=P\Lambda'P^TP\Lambda'P^T=(P\Lambda'P^T)^2 A=PΛΛPT=PΛPTPΛPT=(PΛPT)2。令 S = P Λ ′ P T S=P\Lambda'P^T S=PΛPT,证毕。

定义(顺序主子式) 对于 n n n阶矩阵 A = ( a i j ) A=(a_{ij}) A=(aij),称它的左上角的 r r r阶主子方阵的行列式为 A A A r r r阶顺序主子式。
定理4(赫尔维茨定理) n n n阶实对称矩阵 A A A为正定矩阵 ⟺ \Longleftrightarrow A A A的各阶顺序主子式都为正。
证明过于繁琐,从略。


综上,判断一个矩阵 A A A正定的条件有:
(1) 定义:二次型 x T A x \bm x^TA\bm x xTAx的值恒为正;
(2) 与另一个正定矩阵合同;
(3) 特征值都大于零;
(4) ∃ \exists 可逆矩阵 M M M使得 A = M T M A=M^TM A=MTM
(5) 各阶顺序主子式都大于零。
其中(5)尤其有用,可快速判断一个给定的矩阵是否为正定矩阵。


例题

  1. A , B A,B A,B都是 n n n阶正定矩阵,且 A B = B A AB=BA AB=BA,证明: A B AB AB也是正定矩阵。
    证明 ∵ A , B \because A,B A,B正定, ∴ A , B \therefore A,B A,B是实对称矩阵, A T = A , B T = B A^T=A,B^T=B AT=A,BT=B
    ( A B ) T = ( B A ) T = A T B T = A B (AB)^T=(BA)^T=A^TB^T=AB (AB)T=(BA)T=ATBT=AB ∴ A B \therefore AB AB是实对称矩阵。
    由定理3知, ∃ \exists 可逆矩阵 M , N M,N M,N使得 A = M T M , B = N T N A=M^TM,B=N^TN A=MTM,B=NTN
    A B = M T M N T N = N − 1 ( N M T M N T ) N = N − 1 [ ( M N T ) T ( M N T ) ] N AB=M^TMN^TN=N^{-1}(NM^TMN^T)N=N^{-1}[(MN^T)^T(MN^T)]N AB=MTMNTN=N1(NMTMNT)N=N1[(MNT)T(MNT)]N
    由定理3知 ( M N T ) T ( M N T ) (MN^T)^T(MN^T) (MNT)T(MNT)是正定矩阵,则 ( M N T ) T ( M N T ) (MN^T)^T(MN^T) (MNT)T(MNT)的特征值皆为正。而 A B AB AB与它相似,因此有相同的特征值,所以特征值也都为正,即 A B AB AB正定。
  2. 判断矩阵 A = [ 2 − 1 − 1 − 1 2 − 1 − 1 − 1 2 ] A=\begin{bmatrix}2&-1&-1\\-1&2&-1\\-1&-1&2\end{bmatrix} A=211121112是不是正定矩阵。
    A A A 1 , 2 1,2 1,2阶顺序主子式的值为 2 , 3 2,3 2,3,皆为正。
    ∣ 2 − 1 − 1 − 1 2 − 1 − 1 − 1 2 ∣ = ∣ 0 3 − 3 − 1 2 − 1 0 − 3 3 ∣ = 0 \left|\begin{matrix}2&-1&-1\\-1&2&-1\\-1&-1&2\end{matrix}\right|=\left|\begin{matrix}0&3&-3\\-1&2&-1\\0&-3&3\end{matrix}\right|=0 211121112=010323313=0,即 A A A 3 3 3阶顺序主子式非正,故 A A A不正定。
  3. 证明:若 A , B A,B A,B n n n阶正定矩阵,则 A + B A+B A+B也是正定矩阵。
    证明:由定义, ∀ x ∈ R n ∖ { 0 } \forall\bm x\in R^n\setminus\{\bm 0\} xRn{0} x T A x > 0 \bm x^TA\bm x>0 xTAx>0 x T B x > 0 \bm x^TB\bm x>0 xTBx>0。故 x T ( A + B ) x = x T A x + x T B x > 0 \bm x^T(A+B)\bm x=\bm x^TA\bm x+\bm x^TB\bm x>0 xT(A+B)x=xTAx+xTBx>0,即 A + B A+B A+B正定。
  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值