传统中医药(TCM)作为具有数千年临床实践历史的医学体系,在近几十年来在全球范围内得到越来越多的认可和应用。TCM已成为新药开发的重要自然模板库。传统中药的活性成分已成功应用于治疗复杂疾病的创新药物开发,例如麻黄碱治疗哮喘和青蒿素治疗疟疾(J. Am. Pharm. Assoc.2003, 52:406;Nat. Med. 2011, 17:1217.)。尽管TCM具有重要的治疗价值,但在分子水平和系统角度上理解TCM药理学机制仍面临巨大挑战,这严重阻碍了TCM的现代化进程。研究TCM成分与靶蛋白的相互作用对于阐明TCM的分子机制以及筛选具有治疗潜力的生物活性成分至关重要。
2016年,国家蛋白质科学中心(北京)联合北京中医药大学共同推出了BATMAN-TCM 1.0 (Sci Rep.2016, 4:996 ),一个专为TCM药理研究而设计的中药成分靶蛋白相互作用(TTI)数据库。BATMAN-TCM 1.0自推出以来受到了学界的广泛关注,已有超过640次引用和400,000次访问,为TCM研究领域做出了巨大贡献。但数据库有限的TTI网络覆盖范围和单一的检索功能并不能满足用户在药物研发领域的需求。根据对PubMed(2016-2023)中约10,000篇与中医药相关文章的调查,天然成分及其靶标的研究呈爆炸性增长。此外,基于组学数据中的疾病标志基因,筛选活性中药成分已成为一个重要的研究方向,例如通过基因表达谱鉴定了姜黄素用于急性心肌梗死的治疗(Front Genet.2022, 13:886860.)。为了满足药物研发领域的需求,该团队近期对BATMAN-TCM网站进行了升级,显著增加了TTI网络的覆盖范围,目前已有17,068个已知TTI(增长62.3倍)和2,319,272个高置信度预测TTI(增长3.23倍)。2023年10月31日,该论文“BATMAN-TCM 2.0: an enhanced integrative database for known and predicted linkages between traditional Chinese medicine ingredients and target proteins”在Nucleic Acids Research期刊在线发表,国家蛋白质科学中心李栋研究员、刘中扬副研究员和北京中医药大学郭淑贞教授为论文共同通讯作者,国家蛋白质科学中心的孔祥任硕士研究生、刘超硕士研究生、张祖祯硕士研究生以及河北大学生命科学学院凤凰班本科生程美琪为论文共同第一作者(图1)。
图1 BATMAN-TCM 2.0
(来源:https://doi.org/10.1093/nar/gkad926)
该团队收录了DrugBank、KEGG、TTD、HIT和HERB等数据库的已知的中药成分与靶标蛋白的相互作用(TTI)共计16,312对,并且通过自然语言处理和人工文本挖掘收集了756对近年来新发现的TTI;利用朴素贝叶斯分类器预测了2,319,272对TTI(图3)。为了方便研究人员充分利用新增的数据和功能,该团队重新设计了网站访问与结果展示界面,并添加了相互作用支撑证据等信息。
图2 BATMAN-TCM 2.0技术路线
在BATMAN-TCM 2.0中,用户可以选择“通过中药检索靶标”或者“通过基因检索草药/成分”,前者可指定查询的中药是“复方”、“草药”还是“化合物”,BATMAN-TCM 2.0目前支持54,832味复方、8404味草药和39171个中药化合物的检索与浏览,后者支持多种常见基因的标识符格式(图3 A、D)。
图3 BATMAN-TCM 2.0网站概览
网站最大的改进在于新增了根据特定疾病基因特征(gene list)检索其对应的中药成分/草药的功能。新的网络视图可以仅呈现已知TTI和基于已知TTI进行后续分析,用户可以通过检索页面的选择器进行切换(图3 E)。
在BATMAN-TCM 2.0中,所有已知和预测的相互作用的来源信息被清晰的呈现出来。针对源于数据库的已知相互作用,网站提供了来源数据库的索引及文字信息,对于新挖掘的已知相互作用,会提供文献中的支持语句,并将中药成分和靶标蛋白高亮显示。而对于预测的相互作用,BATMAN-TCM 2.0提供了支持证据页面,包括了化合物相似性、蛋白相似性、已知相互作用(种子)等详细信息(图5 H、I)。
自2016年BATMAN-TCM在Science Report期刊发表后,网站已被广泛用于中药药理机制的探索,网站提供的分析结果也在独立实验研究中得到了验证,例如PD-1 / IL17A通路被发现是宣肺败毒汤治疗急性肺损伤的途径,以及发现了SOD / NOX2是四妙永安汤治疗心力衰竭的的靶点(Pharmacol. Res.2022, 176:106083;Pharmacol.Res.2019,146:104318.)。在此次更新后,更全面的TTI数据集和基于基因的全新检索模式将赋能基于中药的药物研发。比如,BATMAN-TCM 2.0根据9个肥胖相关基因(Sci. Rep.2022, 12:17113.)预测了近50种与治疗肥胖的草药,其中40种草药已被报道与肥胖治疗相关,包括两种常见的草药芦荟(Aloe vera,富集比:5.87)和茶叶(Camellia sinensis,富集比:6.11)。
芦荟(Aloe vera)据报道可以通过抗肥胖相关代谢变化和抗氧化作用从而减少脂肪堆积(Phytother. Res.,33, 2649.)。在BATMAN-TCM 2.0的预测中,芦荟可能通过其成分维生素E通过靶向COL1A2和MMP9(图4)从而发挥抗肥胖作用。事实上,维生素E已被用作肥胖治疗(Obesity (Silver Spring), 2015, 23:1598.),COL1A2也是维生素E的已知靶标(Gastroenterol. Hepatol.2018, 6:451.)。BATMAN-TCM的相似性算法还预测了维生素E与MMP9的相互作用,置信度达0.70。Sozen等人的研究发现,维生素E可以有效降低MMP9的表达,进一步支持了该预测(Redox Biol.2014, 2:732.)。
茶叶(Camellia sinensis)富含生物活性化合物,具有抗氧化、抗炎和降血糖的活性(Free Radic. Biol. Med. 2021, 172:181; Food Chem.2022, 371:131098.)。在BATMAN-TCM 2.0的预测中(图6),提示茶叶中的三种成分可能发挥抗肥胖作用,分别是茶碱(富集比:4.25)、维生素E(富集比:10.41)和儿茶素(EGCG,富集比:46.95)。相关文献证实了这三种成分都可以通过促进脂肪分解和脂代谢来减少脂肪储存和体重(Front. Pharmacol. 2017, 8:444; Nat. Prod. Res. 2018, 32:2121; Int. J. Mol. Sci. 2022, 23:2525.)。BATMAN-TCM 2.0还预测了酸性磷酸酶1(SPP1,得分:0.82)和DNMT3B(得分:0.72)作为茶碱的潜在靶点,实验也证明了SPP1和DNMT3B与肥胖的严重程度呈负相关(Biomolecules,2021, 11:1087; J. Clin. Endocrinol. Metab.2022, 107:e130.)。
图4 BATMAN-TCM 2.0预测治疗肥胖的中药
本次BATMAN-TCM 2.0的推出完善了先前的工作,有助于人们更加全面地认识中药成分与人体的复杂关系,进而助力针对复杂疾病治疗药物的研发。该团队的上述工作受到了国家自然科学基金与国家重点研发计划的支持。
另外,该团队近期还发展了首个中药入血成分数据库DCABM-TCM(http://bionet.ncpsb.org.cn/dcabm-tcm/#/Home)。中药中的绝大部分成分可以产生药理学作用仅仅在它们被吸收进入血液循环。相比于一般在体外检测到的普通成分,这些在血液中实验检测到的成分(包括原型和代谢物)更可能是有活性的且具有好的生物利用度的。DCABM-TCM目前手工挖掘得到了192个复方和194个草药的共计1816个具有结构的入血成分,以及它们相应的详细的检测条件。同时,DCABM-TCM支持网络药理学分析功能以揭示中药分子机制,以及靶标/通路/疾病为基础的候选入血成分筛选功能以辅助中药为基础的药物发现(J Chem Inf Model.2023; 63:4948)。
原文链接
https://doi.org/10.1093/nar/gkad926
点击下方“阅读原文”即可跳转文章链接。
数据库链接
http://bionet.ncpsb.org.cn/batman-tcm/
参考文献:
Liu Z, Guo F, Wang X, Li C, Zhang X, Li H, Diao L, Gu J, Wang W, Li D, He F. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine. Sci. Rep. 2016, 6: 21146.
Kong X, Liu C, Zhang Z, Cheng M, Mei Z, Li X, Liu P, Diao L; Ma Y, Jiang P; Kong X, Nie S, Guo Y, Wang Z, Zhang X, Wang Y, Tang L, Guo S, Liu Z, Li D. BATMAN-TCM 2.0: an enhanced integrative database for known and predicted linkages between traditional Chinese medicine ingredients and target proteins. Nucleic Acids Res. 2023. 10. 1093/nar/gkad926.