ICASSP 2023 | Cough Detection Using Millimeter-Wave FMCW Radar
毫米波感知论文阅读 | ICASSP 2023, Cough Detection Using Millimeter-Wave FMCW Radar
Abstract
-
研究内容
-
提出了一种使用毫米波FMCW雷达检测人体咳嗽信号的信号处理方法
✅ 利用FMCW雷达的相位解调技术可以提取咳嗽引起的微小振动
✅ 采用身体运动伪像消除(BMAC)技术可以抑制运动伪像 ⇒ \Rightarrow ⇒ (运动伪像可以轻易掩盖小振动)
✅ 即使存在大规模身体运动也可以测量咳嗽信号的振动频率
-
-
实验验证
-
进行了 仿真 来评估所提出方法检测咳嗽信号的概率和准确性
✅ 包括分析了FMCW线性调频非线性的影响
-
提出的技术还通过 60 GHz FMCW雷达进行了验证实验
-
-
贡献总结
-
首次使用FMCW雷达实现了咳嗽信号的检测
✅ 提出了身体运动伪像消除(BMAC)技术, 在存在身体运动的情况下检测咳嗽
-
通过仿真验证结果,分析了FMCW非线性性的影响
-
60GHz真实实验验证了所提出方法的有效性
-
1 Introduction
研究的背景和意义
- 传染病蔓延,对健康监测需求增长
- 毫米波雷达受关注,能远程监测生命体征
- 仅监测生命体征不足以判断呼吸状况
- 咳嗽是判断呼吸系统疾病的关键症状
毫米波咳嗽检测的挑战和问题
-
声音方法可侵犯隐私,受声学噪声影响
-
毫米波不受声学噪声影响,但研究很少
🚩 挑战:咳嗽带来大规模身体运动,运动伪像可压倒小振动
🚩 已有方法的不足 :仅检测咳嗽行为,不提取特征 + 未充分解决运动伪像问题
本文创新和贡献
- 检测包含大规模运动的咳嗽
- 提出身体运动伪像消除(BMAC)技术
- 通过仿真和实验进行了验证
2 Signal Model and Methodology
- 咳嗽信号的信号模型
- 使用FMCW雷达的检测方法
- 运动伪像消除技术
- 数值仿真
2.1. FMCW radar signal model
-
FMCW雷达的信号模型
- 在相干处理时间内发射M次脉冲
- 每个脉冲为FMCW线性调频信号
-
发射信号
- s T X ( t , m ) = 1 N c p ( t − m T p ) s_{TX}(t,m) = \frac{1}{\sqrt{N_c}}p(t-mT_p) sTX(t,m)=Nc1p(t−mTp)
- p ( t ) = e j ( 2 π f 0 t + π γ t 2 ) p(t)=e^{j(2\pi f_0t+\pi\gamma t^2)} p(t)=ej(2πf0t+πγt2)
- N c N_c Nc - 脉冲数, T p T_p Tp - 脉冲重复间隔
- γ \gamma γ - 频率斜率, f 0 f_0 f0 - 载波频率
-
接收信号
- s R X ( t , m ) = α s T X ( t − 2 ( d 0 + x [ m ] ) c , m ) + w c (