注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:无监督学习和Zero-shot学习的关系
无监督学习与Zero-shot学习:本质上的差异还是表面的相似?
背景介绍
无监督学习(Unsupervised Learning)和Zero-shot学习(Zero-shot Learning)都是当前机器学习研究的热点方向,都试图在缺乏充足标注数据的情况下进行模型训练。但是这两种学习方式存在本质上的区别。本文将从多个方面解析两者的联系和区别,帮助读者进一步理解这两类学习方式的内涵。
原理介绍
无监督学习
无监督学习利用没有标签的数据进行训练,目的是发现数据中的内在结构或关系。典型的无监督学习方法包括聚类、降维等。
例如,给定大量未标注的图片,无监督学习模型可以将图片根据内容特征进行聚类,相似的图片会聚集在一起。或者通过降维算法像PCA来发现数据中的主要特征和变化趋势。
无监督学习的关键是通过各种算法揭示数据本身所蕴含的模式、关系和结构。<