概念解析 | 无监督学习 VS Zero-shot学习

122 篇文章 140 订阅 ¥29.90 ¥99.00
本文介绍了无监督学习和Zero-shot学习的原理、区别及应用场景。无监督学习通过未标注数据发现内在结构,而Zero-shot学习依赖预构建的语义空间进行新类别识别。两者都在应对数据不足的问题,尽管方法不同,但可以互补以提升机器学习性能。
摘要由CSDN通过智能技术生成

注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:无监督学习和Zero-shot学习的关系

无监督学习与Zero-shot学习:本质上的差异还是表面的相似?

背景介绍

无监督学习(Unsupervised Learning)和Zero-shot学习(Zero-shot Learning)都是当前机器学习研究的热点方向,都试图在缺乏充足标注数据的情况下进行模型训练。但是这两种学习方式存在本质上的区别。本文将从多个方面解析两者的联系和区别,帮助读者进一步理解这两类学习方式的内涵。

原理介绍

无监督学习

无监督学习利用没有标签的数据进行训练,目的是发现数据中的内在结构或关系。典型的无监督学习方法包括聚类、降维等。

例如,给定大量未标注的图片,无监督学习模型可以将图片根据内容特征进行聚类,相似的图片会聚集在一起。或者通过降维算法像PCA来发现数据中的主要特征和变化趋势。

无监督学习的关键是通过各种算法揭示数据本身所蕴含的模式、关系和结构。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R.X. NLOS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值