如何提升供应链能力,助力品牌商、经销商、终端门店?

本文探讨了传统供应链的问题,强调了批发、零售、渠道管理融合在供应链升级中的关键作用,并提出通过数字化销售平台提升品牌商、经销商、终端门店的效率。企业应以客户为中心,利用数据驱动,实现跨渠道整合、服务敏捷化和销售过程数字化,构建全网销售新通路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当代的商业环境错综复杂,企业想获得持久的竞争力,不是只在某一个点上花功夫就可以的,而是一整个体系的创新,整条供应链的进步,围绕企业核心,将供应商、制造商、分销商、零售商、直到最终用户连成一个整体。

01传统供应链中的问题和难点

对于传统企业来说,现实中存在的诸多供应链问题和难点,都会影响企业的长远发展,比如:

经销业务

1、经销及渠道采购业务一直走的线下,没有线上经验;

2、经销业务价格体系、合同、发票、帐期等问题错综复杂,无从下手;

3、多供应商、多经销商、多门店情况下,无法集中管控。

渠道管理

1、渠道各自都有诉求,无法统一游戏规则;

2、渠道对平台的参与感较弱,无法实现协同运营。

3、渠道销售数据的精准性和实时性差;

3、库存的消化和管理混乱

5、渠道业务节点不够清晰透明

零售业务

1、流量入口的收紧以及运营费用、营销推广费用的持续走高,线上业务举步维艰。

2、线下资源(门店、合作商家)得不到有效利用;

3、无法获取精准的客户信息,获取新用户成本高;

4、同平台下,与批发业务无法共存发展。

营销

1、获得新会员、获得订单转化的营销成本高;

2、对全渠道分销欠缺管控手段,分润、返利等规则不透明;

3、互动不足,营销体验差。

内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了Harris和Shi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理和优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念和技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值