算法调研
现在的导航系统,仅有固定的a点到b点之间的单源导航,就算是增加途径点,本质上也是单源的路径规划算法。
但是针对货车场景,货车司机经常需要从多个仓库上货,中间又穿插着多个目标地点下货。针对该场景,传统的导航方式将无法完成任务。
适用于单个车辆的多仓库、多目标路径规划的两种有效算法:遗传算法和蚁群算法。
遗传算法(Genetic Algorithm, GA):
遗传算法是一种优化算法,灵感来自于生物进化的过程。
在单个车辆的多仓库、多目标路径规划中,遗传算法可以用于搜索最优的路径组合。
基本思想:
- 创建一个初始种群,每个个体表示一种路径规划方案。
- 通过选择、交叉和变异操作,不断优化种群中的个体。
- 逐代迭代,直到找到最优解或达到停止条件。
适用性:
遗传算法适用于复杂的路径规划问题,可以处理多个仓库、多个目标点,以及不同的约束条件(如车辆容量、时间窗口等)。
蚁群算法(Ant Colony Optimization, ACO):
蚁群算法模拟了蚂蚁在寻找食物时的行为。
在单个车辆的多仓库、多目标路径规划中,蚁群算法可以用于搜索最短路径。
基本思想:
- 创建一群虚拟蚂蚁,每只蚂蚁代表一种路径规划。
- 蚂蚁根据信息素浓度选择路径,同时释放信息素。
- 信息素浓度会影响其他蚂蚁的选择,从而逐步优化路径。
适用性:
蚁群算法适用于具有多个目标点的复杂环境,可以处理多仓库、多目标点的路径规划问题。
蚁群算法思路考虑
针对遗传算法构建python代码.需要注意的规则如下:
- 必须保证货车先去仓库,再去目标地点;
- 必须保证所有的货物容量和重量不会超出车辆容量和限重。
- 输入为仓库坐标和目标坐标的二元列表的列表,例如[[仓库1,目标1,体积1,重量1],[仓库1,目标2,体积2,重量2],[仓库2,目标1,体积3,重量3],[仓库2,目标2,体积4,重量4],[仓库3,目标3,体积5,重量5]]
伪代码如下:
初始化算法参数和信息素矩阵
设置起始点坐标
初始化仓库和目标的货物状态
for 迭代次数 in 范围(最大迭代次数):
蚂蚁列表 = []
for 蚂蚁 in 范围(蚂蚁数量):
当前蚂蚁 = 初始化蚂蚁(起始点坐标)
当前蚂蚁的路径 = []
当前蚂蚁的装载状态 = 初始化装载状态
while 仍有未送达的货物:
下一个节点 = 当前蚂蚁选择下一个节点(根据信息素和启发式信息)
当前蚂蚁的路径.append(下一个节点)
if 下一个节点是仓库:
加载货物到当前蚂蚁(根据剩余容量)
更新当前蚂蚁的装载状态
elif 下一个节点是目标:
卸载货物从当前蚂蚁(根据目标需求量)
更新当前蚂蚁的装载状态