多源多点货车路径规划问题MSMP,蚁群算法

算法调研

现在的导航系统,仅有固定的a点到b点之间的单源导航,就算是增加途径点,本质上也是单源的路径规划算法。

但是针对货车场景,货车司机经常需要从多个仓库上货,中间又穿插着多个目标地点下货。针对该场景,传统的导航方式将无法完成任务。

适用于单个车辆的多仓库、多目标路径规划的两种有效算法:遗传算法和蚁群算法。

遗传算法(Genetic Algorithm, GA):

遗传算法是一种优化算法,灵感来自于生物进化的过程。

在单个车辆的多仓库、多目标路径规划中,遗传算法可以用于搜索最优的路径组合。

基本思想:

  • 创建一个初始种群,每个个体表示一种路径规划方案。
  • 通过选择、交叉和变异操作,不断优化种群中的个体。
  • 逐代迭代,直到找到最优解或达到停止条件。

适用性:

遗传算法适用于复杂的路径规划问题,可以处理多个仓库、多个目标点,以及不同的约束条件(如车辆容量、时间窗口等)。

蚁群算法(Ant Colony Optimization, ACO):

蚁群算法模拟了蚂蚁在寻找食物时的行为。

在单个车辆的多仓库、多目标路径规划中,蚁群算法可以用于搜索最短路径。

基本思想:

  • 创建一群虚拟蚂蚁,每只蚂蚁代表一种路径规划。
  • 蚂蚁根据信息素浓度选择路径,同时释放信息素。
  • 信息素浓度会影响其他蚂蚁的选择,从而逐步优化路径。

适用性:

蚁群算法适用于具有多个目标点的复杂环境,可以处理多仓库、多目标点的路径规划问题。

蚁群算法思路考虑

针对遗传算法构建python代码.需要注意的规则如下:

  • 必须保证货车先去仓库,再去目标地点;
  • 必须保证所有的货物容量和重量不会超出车辆容量和限重。
  • 输入为仓库坐标和目标坐标的二元列表的列表,例如[[仓库1,目标1,体积1,重量1],[仓库1,目标2,体积2,重量2],[仓库2,目标1,体积3,重量3],[仓库2,目标2,体积4,重量4],[仓库3,目标3,体积5,重量5]]

 伪代码如下:

初始化算法参数和信息素矩阵  
设置起始点坐标  
初始化仓库和目标的货物状态  
  
for 迭代次数 in 范围(最大迭代次数):  
    蚂蚁列表 = []  
      
    for 蚂蚁 in 范围(蚂蚁数量):  
        当前蚂蚁 = 初始化蚂蚁(起始点坐标)  
        当前蚂蚁的路径 = []  
        当前蚂蚁的装载状态 = 初始化装载状态  
          
        while 仍有未送达的货物:  
            下一个节点 = 当前蚂蚁选择下一个节点(根据信息素和启发式信息)  
            当前蚂蚁的路径.append(下一个节点)  
              
            if 下一个节点是仓库:  
                加载货物到当前蚂蚁(根据剩余容量)  
                更新当前蚂蚁的装载状态  
            elif 下一个节点是目标:  
                卸载货物从当前蚂蚁(根据目标需求量)  
                更新当前蚂蚁的装载状态  
                  
      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千天夜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值