Langchain使用介绍之-文档加载

本篇博客介绍了Langchain加载多种文档的能力。它能加载txt、csv等格式文档,还支持网页、音频、pdf等。具体介绍了通过Langchain加载PDF文档、Youtube音频信息和Web Page的方法,还提及可通过json转换获取真正的文档内容,更多信息可查看官网。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   Lanchain提供了加载多种文档的能力,Lanchain初了能加载txt,csv等格式文档外,还支持加载网页,音频,pdf等。本篇博客将介绍如何通过Langchain完成PDF文档,音频文档,网页文档的加载。

   加载PDF文档

  通过使用Langchain提供的PyPDFLoader,可以非常容易的加载一个已有的pdf文档,需要注意一点:使用PyPDFLoader需要安装pip3 install pypdf。

from langchain.document_loaders import PyPDFLoader

loader = PyPDFLoader(
    './chat-with-data/data/cs229_lectures/MachineLearning-Lecture01.pdf')
result = loader.load()
print(type(result))
print(len(result))
print(result[0])
page = result[0]
print(page.page_content)
print(page.metadata)

  加载完成后,打印加载的信息,可以看到结果信息类型是一个List,List的长度是22,这个pdf的页数也是22。所以,存放PDF文档内容是按页来存储的。每一个List中的值,包含page_content和metadata信息。

### 使用GPU加速Langchain-Chatchat的文档解析 对于希望利用GPU来加速Langchain-Chatchat中的文档解析过程的情况,主要关注点在于模型推理阶段所消耗的资源优化。当采用更高效的计算方式如GPU时,可以显著减少处理时间并提高性能。 #### 环境准备 为了使Langchain-Chatchat能够充分利用GPU的能力,在安装之初就需要确保环境配置正确无误: - **拉取项目仓库** ```bash git clone https://github.com/chatchat-space/Langchain-Chatchat.git cd Langchain-Chatchat ``` - **创建虚拟环境** 由于不同的硬件平台可能会影响最终效果,建议按照官方指南设置适合当前系统的开发环境[^1]。 #### 配置文件调整 针对想要启用GPU支持的需求,重点在于修改`kb_settings`部分参数以适应特定场景下的最佳实践。虽然这部分配置主要用于定义向量知识库特性等基础功能,但在涉及大规模数据集或复杂模型训练/推断任务时,合理的资源配置显得尤为重要[^3]。 具体来说,如果计划使用GPU来进行加速操作,则需确认如下几点: - 检查CUDA版本是否兼容; - 设置合适的batch size以平衡速度与内存占用之间的关系; - 调整其他影响效率的因素比如线程数量、缓存策略等。 #### 实现GPU加速的具体方法 考虑到实际应用场景中可能会遇到不同类型的任务需求,下面给出了一种基于PyTorch框架实现的方式作为参考案例之一(假设已经完成了上述准备工作): ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased') model = AutoModelForSequenceClassification.from_pretrained('distilbert-uncased').to(device) def parse_document(text): inputs = tokenizer(text, return_tensors="pt").to(device) outputs = model(**inputs)[0].detach().cpu().numpy() return outputs ``` 这段代码展示了如何加载预训练的语言模型并将它迁移到可用的GPU设备上执行推理工作流。通过这种方式可以在一定程度上加快文本分析的速度,特别是面对大量待处理材料的情况下更为明显[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

taoli-qiao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值