DCFL: for Oriented Tiny Object Detection



hh
源代码

Abstract

检测任意方向的微小目标给现有的检测器带来了巨大的挑战,特别是在标签分配方面。定向微小目标的极端几何形状和有限特征仍然会导致严重的不匹配和不平衡问题。具体而言,位置先验、正样本特征和实例不匹配,并且由于缺乏适当的特征监督,极端形状目标的学习存在偏差和不平衡,即特征先验不匹配和正样本不平衡是阻碍定向微小目标标签分配的两个障碍。(此前作者提出的RFLA一定程度上解决了问题,但静态分配不能根据样本的形状自适应划分正负样本,不能过滤掉低质量样本。)

为了解决这些问题,作者提出了一个动态先验和由粗到精的分配器,称为DCFL。
一方面,以动态方式对先验、标签分配和目标表征进行建模,以减轻不匹配问题另一方面,利用粗糙的先验匹配和更精细的后验约束来动态地分配标签,为不同的实例提供适当和相对平衡的监督。

Introduction

研究表明,引入旋转角度极大地消除了物体的背景区域。
DAL定义了一个预测感知的匹配度,并利用它来重新加权锚点,实现动态样本学习。此外,一些研究将形状信息纳入检测器,并提出形状感知采样和测量。

不匹配和不平衡的问题尤其明显。首先,在位置先验、特征和实例之间存在相互不匹配的问题。尽管一些自适应标签分配方案可能会探索更好的先验框或点的正负划分,但先验后面的采样特征位置仍然是固定的,派生的先验仍然是静态和均匀定位的,大多数先验偏离了微小物体的主体。无论如何划分正负样本,先验和特征本身都不能很好地匹配定向微小物体的极端形状
另一方面,现存检测器对定向微小物体往往会引入偏差和不平衡,更准确的说,对于基于锚的探测器,与锚盒形状不同的gt将产生低IoU,导致缺少阳性样本。对于无锚检测器,静态先验及其固定步幅限制了高质量阳性样本的上限。微小物体只覆盖有限数量的特征点,而且这些特征点大多远离目标主体

基于此,作者通过以动态方式重新制定先验、标签分配和gt表征来缓解不匹配问题,这些都可以由深度神经网络(DNN)更新。同时,作者采用从粗到精的动态递进方式分配标签,以寻求对各种实例的平衡监督
具体来说,作者引入了一个动态的先验捕获块(PCB)来学习先验,它在保留先验的物理意义的同时自适应地调整先验位置(PCB的灵感来自于DETR[4]和Sparse R-CNN[48]中可学习提案的范例,它自然地避免了预定义的先验和特征之间的不匹配问题)。

Contribution

  1. 作者发现,目前面向微小目标检测的学习管道存在严重的不匹配和不平衡问题
  2. 作者设计了一种面向微小目标检测的动态粗
  • 24
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值