人与车碰撞的速度模型
属于小轿车,底盘低。行人撞上之后,车头会撞击到人的腿部,人的上半身受到力的作用趴到引擎盖上,头撞到风挡玻璃上,产生二次碰撞。此时如果驾驶员踩刹车使车的速度降下来,但人与车的质量有一个比例关系,所以行人的初始速度可忽略不计,根据动量守恒定律,碰撞后在某一时刻人会获得与车相同的运动速度,以的角度斜抛出去,之后落地,此刻行人仍具有水平运动的能量,水平的速度,在弹性碰撞的作用下,因人体较软弱,受到里的作用弹几下或划出去;或者会出现碰撞之后行人会朝上飞起来,在汽车制动停止后,落到车辆的后面;人在飞起来的时候,有水平速度,落得位置不确定。本文主要以行人被抛出去后,落地后弹几下,最后在路面滑行一段距离后停止为计算标准。
图3-2 与车碰撞后行人的运动形态
假设行人与车辆碰撞后,撞击地面,在地面弹了几下后,继续以一定的减速度在地面上滑行,直到停止。由图3-2可知,因为碰撞点位置不可测,则行人抛射距离与车辆后制动的距离都无法获得,但行人与车辆的最终距离可测量,故可以此来获取人—车碰撞的车速模型。
人路间摩擦因数为,行人与车辆碰撞后某时刻的共同速度为,车辆制动滑行的距离为,行人与车辆碰撞后第一次撞击地面的距离为,行人第一次撞击地面的时间为t=,行人在地面滑行的距离为,行人被碰撞的抛距为。
当不考虑空气阻力时,汽车与行人碰撞后在某一时刻达到的共同速度为,在行人与地面撞击后,此刻的速度为,行人以匀速的减速度在地面向前滑行,行人第一次接触地面后,又弹跳了几下,因其速度在人路之间的摩擦和弹性碰撞的力的变化不明确,此刻,根据第一次碰撞后以滑行为主要的运动形态为研究对象,人路之间的摩擦因数表示为。
根据动量守恒原理得出汽车碰撞时的速度与的关系式为:
(2)
考虑到人的重心为,可知行人被撞后在空中飞行的时间为:
(3)
行人从碰撞到第一次撞击地面时的距离为:
(4)
此时的速度:
(5)
人在地面滑行的距离为:
(6)
行人的碰撞到落地的距离可表示为,于是可得为:
(7)
根据式(2)、(7)得出:
(8)
已知最后行人的终止点到汽车停止点的距离为,根据:
(9)
得到:
(10)
根据式(1)、(8)、(10)得出
(11)
(12)
根据式(8)、(12)的计算得出:
(13)
根据,可将其忽略不计,则得出:
(14)
代入式(11)得出碰撞时车辆的速度为:
(15)
441