《向量数据库指南》——大模型时代,为什么向量数据库成为标配?

Milvus Cloud是一款面向AI的向量数据库,它提供数据持久化、高性能查询、智能分布及易用性。通过磁盘索引实现存储性价比提升,利用GPU加速查询性能。此外,其支持动态Schema、多向量打分等功能,满足AIGC场景需求,具备稳定可用性,提供故障恢复和多租户管理。智能化特性如AutoIndex通过AI技术优化性能。
摘要由CSDN通过智能技术生成

目录

1. 数据持久化和低成本存储

2. 高性能查询

3. 数据分布

4. 易于使用

5. 稳定可用

6. 可运维可观测

7. 智能化


1. 数据持久化和低成本存储

许多单机和轻量级的向量数据库并没有关注数据的可靠性,Milvus Cloud 基于对象存储和消息队列的存储方案既通过存储计算分离提升了系统的弹性和扩展性,又保证了系统的可持久化性。更为重要的是,大多数 ANN 索引都是纯内存加载的,需要消耗大量内存才能执行检索。Milvus Cloud 是全球第一款支持磁盘索引的向量数据库,相比磁盘索引可以提供十倍以上的存储性价比。

 

2. 高性能查询

查询性能是选择 ANN 而非 KNN 暴力搜索的核心需求。经测试,市面上大量传统数据库向量检索插件其查询性能只有 Milvus Cloud 十分之一,且由于没有对索引进行分片,索引构造的时间和效率会随着数据量的增长大幅下降,因此只能适用于千万级数据量且不存在频繁增删的场景。作为一个计算密集型应用,向量数据库的重要关注点在于充分压榨 CPU 算力,甚至利用异构算力实现加速。其 GPU 向量索引可以实现在千万数据集下万级别的 QPS,单机性能高于传统 CPU 索引一个数量级。

功能设计 ​ 系统功能模块较为简单,主要功能就是**新增人脸**和**人脸搜索**两个功能,其新增人脸使用页面上传和压缩包批量上传两个方式,压缩包上传时文件名称为用户名,下面主要说明人脸搜索的功能流程 ##### Milvues ​ 在介绍前需要说明一下Mulvus ​ Milvus 向量数据库能够帮助用户轻松应对海量非结构化数据(图片 / 视频 / 语音 / 文本)检索。单节点 Milvus 可以在秒内完成十亿级的向量搜索 ​ 因此虹软的SDK只能提取向量及对比的功能,在大规模人脸识别,需要搜索引擎对于人脸数据进行初步筛选到一个较小的范围后在利用虹软的SDK进行测试,值得一提的是,博主多次测试后Milvues返回的匹配率足以满足人脸匹配的要求,Milvus的安装部署和使用文档参考 https://milvus.io/cn/docs/v2.0.x ​ **特别说明的是**虹软提取的数组是一个经过归一后的1032长度的byte数组,我们需要对数组进行转换,去除前8位的版本号,并将1024长度的byte转为256长度的float向量,这部分可以利用Arrays提供的方法进行转换,代码也有相应的工具类 ##### 人脸上传(单张) ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大禹智库

大禹智库——河南第一民间智库

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值