Loss和Reward分析和改善DQN的训练

Loss 分布分析

  1. 初期阶段的高 loss

    • 在训练开始时,loss 值非常高。这是正常现象,因为神经网络刚开始随机初始化,策略还没有学到有用的信息。
    • 随着训练进行,loss 快速下降,表明模型开始从经验中学习,并调整其参数来更好地拟合 Q 值。
  2. 震荡和波动

    • 在训练过程中,loss 依然有一定的波动。这可能是由于经验重放(experience replay)的样本多样性导致的。每次更新 Q 网络时,样本的分布不同会导致 loss 有波动。
    • 轻微的波动是正常的,表明模型在不断调整和优化策略,但如果波动过大,可能需要调整学习率或者其他超参数。
  3. 逐渐趋于平稳

    • 在训练的后期,loss 值逐渐趋于平稳并保持在较低水平,表明模型已经收敛到一个较优的策略。
    • 平稳的 loss 表示模型的学习过程稳定,能够较好地预测 Q 值。

Reward 分布分析

  1. 负值和正值的分布

    • 初期阶段,reward 可能大多为负值或较小的正值。这表明模型刚开始训练时,行为策略还不够好,可能频繁地做出不理想的决策。
    • 随着训练进行,正值 reward 逐渐增多,表明模型在学习过程中行为策略有所改善,能做出更好的决策。
  2. 波动性

    • reward 的波动性较大。这在强化学习中是正常现象,因为环境反馈具有一定的随机性,特别是在探索阶段。
    • 如果波动性过大,可以考虑调整 ε-greedy 策略中的 ε 值,减少随机探索的比例,增加利用现有策略的比例。
  3. 长期趋势

    • 如果总体趋势是 reward 逐渐增大,这表明模型的策略在不断改善。
    • 如果 reward 没有显著改善或出现长期的下降趋势,则可能需要检查模型的超参数设置、reward 函数设计或者环境的设定。

综合分析

  1. 模型性能改进

    • 从 loss 的逐渐下降和趋于平稳可以看出模型在训练过程中逐渐优化,找到了较优的策略。
    • reward 的逐渐增加则表明优化的策略在环境中表现更好,能够获得更高的奖励。
  2. 潜在问题

    • 如果 loss 在某一阶段后没有继续下降,或者 reward 长期处于低水平,可能需要重新调整超参数,如学习率、折扣因子、探索率等。
    • 如果 loss 或 reward 出现异常波动,需要检查数据的预处理、经验重放池的更新机制等。

总的来说,通过分析 loss 和 reward 分布,可以判断 DQN 训练过程的有效性和潜在问题,从而更好地调整和优化训练策略。

好的,以下是一个简单的DQN算法用来训练PONG游戏的代码。请注意,这只是一个基本的实现,可以做更多的改进和优化。 首先,我们需要安装必要的库:pytorch和gym。 ```python !pip install torch !pip install gym ``` 接下来,我们将导入所需的库和定义一些超参数。 ```python import random import numpy as np import torch import torch.nn as nn import torch.optim as optim import gym # 超参数 BATCH_SIZE = 32 LEARNING_RATE = 0.0005 EPSILON = 1 EPSILON_DECAY = 0.9995 EPSILON_MIN = 0.01 GAMMA = 0.99 TARGET_UPDATE = 10 MEMORY_SIZE = 1000000 ``` 现在,我们将定义我们的DQN模型。 ```python class DQN(nn.Module): def __init__(self, input_dim, output_dim): super(DQN, self).__init__() self.fc1 = nn.Linear(input_dim, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, output_dim) def forward(self, x): x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x ``` 然后,我们将定义我们的游戏环境和存储经验的经验回放缓冲区。 ```python env = gym.make('Pong-v0') input_dim = env.observation_space.shape[0] * env.observation_space.shape[1] * env.observation_space.shape[2] output_dim = env.action_space.n memory = [] ``` 接下来,我们将定义我们的DQN代理和目标网络,以及与之关联的优化器。 ```python agent = DQN(input_dim, output_dim) target = DQN(input_dim, output_dim) target.load_state_dict(agent.state_dict()) target.eval() optimizer = optim.Adam(agent.parameters(), lr=LEARNING_RATE) ``` 现在,我们将定义我们的动作选择函数,该函数将根据当前的epsilon值使用epsilon-greedy策略选择动作。 ```python def select_action(state, epsilon): if random.random() < epsilon: return env.action_space.sample() else: with torch.no_grad(): state = torch.from_numpy(state).float().unsqueeze(0) q_values = agent(state) return q_values.max(1)[1].item() ``` 然后,我们将定义我们的训练函数,该函数将从经验回放缓冲区中随机选择一批经验,并使用它们来更新我们的DQN代理。 ```python def train(): if len(memory) < BATCH_SIZE: return transitions = random.sample(memory, BATCH_SIZE) batch = Transition(*zip(*transitions)) state_batch = torch.from_numpy(np.stack(batch.state)).float() action_batch = torch.from_numpy(np.array(batch.action)).long() reward_batch = torch.from_numpy(np.array(batch.reward)).float() next_state_batch = torch.from_numpy(np.stack(batch.next_state)).float() done_batch = torch.from_numpy(np.array(batch.done)).float() q_values = agent(state_batch).gather(1, action_batch.unsqueeze(1)).squeeze(1) next_q_values = target(next_state_batch).max(1)[0].detach() expected_q_values = reward_batch + (1 - done_batch) * GAMMA * next_q_values loss = nn.functional.smooth_l1_loss(q_values, expected_q_values) optimizer.zero_grad() loss.backward() optimizer.step() ``` 最后,我们将定义我们的主要训练循环,该循环将在游戏中运行并更新我们的DQN代理和目标网络。 ```python Transition = np.dtype([('state', np.float32, (input_dim,)), ('action', np.int32), ('reward', np.float32), ('next_state', np.float32, (input_dim,)), ('done', np.bool)]) epsilon = EPSILON state = env.reset() while True: action = select_action(state, epsilon) next_state, reward, done, info = env.step(action) memory.append((state, action, reward, next_state, done)) if len(memory) > MEMORY_SIZE: del memory[0] state = next_state train() if done: state = env.reset() if env._episode_started_at is not None: episode_length = info['steps'] - env._episode_started_at if episode_length > 0: episode_reward = info['score'] print(f"Episode {len(memory)} - Reward: {episode_reward} - Steps: {episode_length}") if len(memory) % TARGET_UPDATE == 0: target.load_state_dict(agent.state_dict()) if epsilon > EPSILON_MIN: epsilon *= EPSILON_DECAY epsilon = max(EPSILON_MIN, epsilon) ``` 这就是我们的DQN算法的完整实现。您可以将其保存为.py文件并在控制台中运行。在训练过程中,您将看到每个回合的奖励和步骤数。请注意,训练可能需要一段时间,具体取决于您的计算机性能和超参数设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值