Loss和Reward分析和改善DQN的训练

Loss 分布分析

  1. 初期阶段的高 loss

    • 在训练开始时,loss 值非常高。这是正常现象,因为神经网络刚开始随机初始化,策略还没有学到有用的信息。
    • 随着训练进行,loss 快速下降,表明模型开始从经验中学习,并调整其参数来更好地拟合 Q 值。
  2. 震荡和波动

    • 在训练过程中,loss 依然有一定的波动。这可能是由于经验重放(experience replay)的样本多样性导致的。每次更新 Q 网络时,样本的分布不同会导致 loss 有波动。
    • 轻微的波动是正常的,表明模型在不断调整和优化策略,但如果波动过大,可能需要调整学习率或者其他超参数。
  3. 逐渐趋于平稳

    • 在训练的后期,loss 值逐渐趋于平稳并保持在较低水平,表明模型已经收敛到一个较优的策略。
    • 平稳的 loss 表示模型的学习过程稳定,能够较好地预测 Q 值。

Reward 分布分析

  1. 负值和正值的分布

    • 初期阶段,reward 可能大多为负值或较小的正值。这表明模型刚开始训练时,行为策略还不够好,可能频繁地做出不理想的决策。
    • 随着训练进行,正值 reward 逐渐增多,表明模型在学习过程中行为策略有所改善,能做出更好的决策。
  2. 波动性:</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值