Loss 分布分析
-
初期阶段的高 loss:
- 在训练开始时,loss 值非常高。这是正常现象,因为神经网络刚开始随机初始化,策略还没有学到有用的信息。
- 随着训练进行,loss 快速下降,表明模型开始从经验中学习,并调整其参数来更好地拟合 Q 值。
-
震荡和波动:
- 在训练过程中,loss 依然有一定的波动。这可能是由于经验重放(experience replay)的样本多样性导致的。每次更新 Q 网络时,样本的分布不同会导致 loss 有波动。
- 轻微的波动是正常的,表明模型在不断调整和优化策略,但如果波动过大,可能需要调整学习率或者其他超参数。
-
逐渐趋于平稳:
- 在训练的后期,loss 值逐渐趋于平稳并保持在较低水平,表明模型已经收敛到一个较优的策略。
- 平稳的 loss 表示模型的学习过程稳定,能够较好地预测 Q 值。
Reward 分布分析
-
负值和正值的分布:
- 初期阶段,reward 可能大多为负值或较小的正值。这表明模型刚开始训练时,行为策略还不够好,可能频繁地做出不理想的决策。
- 随着训练进行,正值 reward 逐渐增多,表明模型在学习过程中行为策略有所改善,能做出更好的决策。
-
波动性:</