【图像处理】KLT稀疏光流的对象跟踪

本文介绍了KLT(Kanade-Lucas-Tomasi)稀疏光流法在对象跟踪中的使用。通过解析算法原理并结合OpenCV库中的calcOpticalFlowPyrLK函数,实现对视频中目标物体的跟踪。实验视频来源于网络,经过处理得到的截图展示了跟踪效果。
摘要由CSDN通过智能技术生成

稀疏光流法的原理解读:https://blog.csdn.net/koibiki/article/details/80225827

稀疏光流法在opencv中的实现函数为 calcOpticalFlowPyrLK

用以实验的视频是我在百度上下载的。

处理完后的截取图片:

实现代码如下:

#include<opencv2/opencv.hpp>
#include<iostream>
using namespace std;
using namespace cv;

Mat frame,gray;
Mat pre_frame,pre_gray;

vector<Point2f> features;  //存放角点
vector<Point2f> iniPoints; //初始化特征数据
vector<Point2f> fpts[2]; // fpts[0]  fpts[1]  保存当前帧和前一帧的特征点位置
vector<uchar> status;  //跟踪时候,特征点跟踪标志位
vector<float> errors;  //跟踪时 区域误差总和

//函数声明
void detect
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值