全差分运放电路分析

在这里插入图片描述
可以看到,该运放有正负两个反馈。首先需要申明的是:全差动运算放大器仍然满足虚短虚断的特性。

从上图中可以看到,运放的正输入端有一个Vin信号,负输入端没有接输入信号;这是一种典型的将单端输入型号转化成差分信号的连接方式。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 关于AcWing平台上最长公共子序列问题 #### 解决方案概述 针对AcWing平台上的最长公共子序列(LCS)问题,采用动态规划(DP)[^1]是一种高效的方法来解决此类挑战。此方法不仅能够有效地计算两个字符串之间的最大匹配字符数量,而且可以进一步扩展以追踪具体的匹配径。 #### 动态规划原理说明 通过构建二维表格dp[i][j]表示第一个串前i个字符与第二个串前j个字符的最大匹配数[^2]。当遇到相同字符时,在左上角的基础上加一;如果不同则取上方和左侧较大者继承下来作为当前格子的值。最终整个表填满后的右下角即为所求的结果长度。 #### Python代码实现示例 下面是一个基于上述理论的具体Python程序: ```python def longest_common_subsequence(text1: str, text2: str) -> int: m, n = len(text1), len(text2) dp = [[0] * (n + 1) for _ in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): if text1[i - 1] == text2[j - 1]: dp[i][j] = dp[i - 1][j - 1] + 1 else: dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) return dp[-1][-1] ``` 这段代码实现了寻找两段文字间最长公共子序列的功能,并返回其长度[^3]。 #### 进一步获取具体子序列内容 为了得到实际构成这个最小子序列的内容而不是仅仅知道它的长度,可以在原有基础上增加回溯过程。从`dp[m][n]`出发向左上角遍历直到起点位置,每当发现相等情况就记录对应字母到列表中最后反转即可获得完整的LCS字符串[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qlexcel

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值