原型网络Prototypical Network的python代码逐行解释,新手小白也可学会!!-----系列7(承接系列6)

在这里插入图片描述


前言

此部分为原型网络的两个函数,分别为保存原型点函数和加载原型点函数,与之前的系列相承接。


一、原始代码—保存原型点,加载原型点

def save_center(self,path):
		datas = []
		for label in self.center.keys():
			datas.append([label] + list(self.center[label].cpu().detach().numpy()))
		with open(path,"w", newline="") as datacsv:
			csvwriter = csv.writer(datacsv,dialect = ("excel"))
			csvwriter.writerows(datas)
	
	def load_center(self,path):
		csvReader = csv.reader(open(path))
		for line in csvReader:
			label = int(line[0])
			center = [ float(line[i]) for i in range(1,len(line))]
			center = np.array(center)
			center = Variable(torch.from_numpy(center))
			self.center[label] = center

二、代码逐行解释

save_center(self, path):

datas = []: 初始化一个空列表,用于存储要写入文件的数据。

for label in self.center.keys(): 遍历 self.center 字典的键(可能代表中心的不同标签或名称)。

datas.append([label] + list(self.center[label].cpu().detach().numpy())): 将每个键以及与该键关联的值添加到 datas 列表中。

这里,.cpu().detach().numpy() 是将 PyTorch 张量转换为 numpy 数组的过程。

with open(path, "w", newline="") as datacsv: 使用 “w” 模式(写模式)打开文件,如果文件已存在,则覆盖它。

csvwriter = csv.writer(datacsv, dialect = ("excel")): 使用 csv 模块创建一个写入器,指定使用的语法为 Excel 语法。

csvwriter.writerows(datas): 将 datas 列表中的所有行写入到文件中。

load_center(self, path):

csvReader = csv.reader(open(path)): 使用 csv 模块创建一个读取器,以读取打开的文件。

for line in csvReader: 遍历文件中的每一行。

label = int(line[0]): 从第一列读取一个整数,并将其赋值给变量 label。

center = [ float(line[i]) for i in range(1,len(line))]: 从第二列到最后一列读取一系列浮点数,并将它们放入一个列表中。

center = np.array(center): 将上述列表转换为 numpy 数组。

center = Variable(torch.from_numpy(center)): 将 numpy 数组转换回 PyTorch 张量,并使用 torch.from_numpy() 方法。

self.center[label] = center: 将新加载的中心存储到 self.center 字典中,使用从文件中读取的标签作为键。


### 回答1: 原型网络是一种基于距离度量的分类模型,它通过计算输入样本与每个类别的原型之间的距离来进行分类。原型可以是类别的平均值、中心点或代表性样本。该模型在小样本学习中表现出色,因为它不需要大量的训练数据就可以进行分类。 ### 回答2: 原型网络是一种用于处理图像分类任务的深度学习模型。它的灵感来源于人类对物体的认知过程,即将物体与所了解的样本进行比较,然后将其分类为属于哪个类别。原型网络的核心思想就是通过比较输入图像和已知样本之间的相似程度来确定图像的类别。 原型网络的架构非常简单,它由两个主要部分组成:卷积层和比较层。卷积层将输入的图像转换为特征向量,并提取其特征。比较层由多个原型向量组成,每个原型向量代表类别中心,即样本的平均值。当输入图像被传递到比较层时,将计算输入向量与每个原型向量之间的距离,距离越小,图像就越可能属于该类。 与其他深度学习模型相比,原型网络具有许多优点。首先,它的计算效率非常高。由于原型网络只需要计算每个类别的平均值,因此它可以很容易地扩展到具有大量类别的大规模数据集。其次,原型网络的可解释性非常好。由于每个原型向量代表一个类别,因此可以轻松地解释哪些特征被认为是用于识别该类别的最重要的特征。 总之,原型网络是一种非常简单而又有效的图像分类模型。它能够高效地处理大规模数据集,并具有很好的可解释性,这使其成为了一种流行的深度学习模型。 ### 回答3: 原型网络prototypical network)是一种基于原型的学习方法,用于分类任务。它被认为是一种简单而有效的深度学习模型,已经在语音识别、图像分类等领域得到了广泛应用。该模型的基本思想是将类别信息映射到一个低维的原型空间中,从而通过计算距离来进行类别分类。 原型网络的训练过程可以概括为以下几个步骤:首先,对于每个类别,从训练数据中挑选一些样本作为该类别的原型。这些原型可以是某个样本的平均值、中心点或其他特定的统计量。接着,对于每个样本,计算其到各个原型的距离,并选取距离最小的那个原型作为该样本所属的类别。最后,通过使用交叉熵等损失函数来对模型进行训练,使得原型能够更好地区分不同的类别。 相比于传统的深度学习模型,原型网络具有以下几个优势:首先,由于其使用了低维的原型空间,计算速度较快且存储空间占用较小。其次,模型的可解释性较高,可以直观地对原型进行分析,从而得到更深入的理解。最后,原型网络对于小样本学习具有一定的优势,即在只有少量训练数据的情况下,仍然可以取得较好的分类性能。 总之,原型网络是一种简单而有效的深度学习模型,具有较好的分类性能和可解释性,是当前学术界和工业界研究的热点之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值