原型网络Prototypical Network的python代码逐行解释,新手小白也可学会!!-----系列8

在这里插入图片描述


前言

这是该系列原型网络的最后一段代码及其详细解释,感谢各位的阅读!


一、原始代码

if __name__ == '__main__':
    ##载入数据
    labels_trainData, labels_testData = load_data()  # labels_trainData是字典,是key:value形式
    class_number_train = max(list(labels_trainData.keys())) #963
    class_number_test = max(list(labels_testData.keys())) #658

    wide = labels_trainData[0][0].shape[0]  # 105      #二维张量,shape[0]代表行数,shape[1]代表列数
    length = labels_trainData[0][0].shape[1]  # 105

    for label in labels_trainData.keys():
        labels_trainData[label] = np.reshape(labels_trainData[label], [-1, 1, wide, length])

    for label in labels_testData.keys():
        labels_testData[label] = np.reshape(labels_testData[label], [-1, 1, wide, length])

    ##初始化模型
    protonets = Protonets((1, wide, length), 10, 5, 5, 60, './log/', 50)  # '''根据需求修改类的初始化参数,参数含义见protonets_net.py'''

    ##训练prototypical_network
    for n in range(100):  ##随机选取x个类进行一个episode的训练
        protonets.train(labels_trainData, class_number_train)
        if n % 2 == 0 and n != 0:  # 每5次存储一次模型,并测试模型的准确率,训练集的准确率和测试集的准确率被存储在model_step_eval.txt中
            torch.save(protonets.model, './log/model_net_' + str(n) + '.pkl')
            protonets.save_center('./log/model_center_' + str(n) + '.csv')
            test_accury = protonets.evaluation_model(labels_testData, class_number_test)
            print(test_accury)
            str_data = str(n) + ',' + str('       test_accury     ') + str(test_accury) + '\n'
            with open('./log/model_step_eval.txt', "a") as f:
                f.write(str_data)
        print(n)

二、对每一行代码的解释:

  1. if __name__ == '__main__':
    这是一个Python的惯用写法,表示当脚本直接被运行时(而不是被作为模块导入时),才会执行下面的代码块。

  2. labels_trainData, labels_testData = load_data()
    调用 load_data() 函数加载数据,并将返回的标签训练数据和标签测试数据保存到 labels_trainDatalabels_testData 变量中。

  3. class_number_train = max(list(labels_trainData.keys()))
    获取标签训练数据中的最大键(即最大类别数),并将其保存到 class_number_train 变量中。

  4. class_number_test = max(list(labels_testData.keys()))
    获取标签测试数据中的最大键(即最大类别数),并将其保存到 class_number_test 变量中。

  5. wide = labels_trainData[0][0].shape[0]
    获取标签训练数据中第一个样本的宽度,并将其保存到 wide 变量中。

  6. length = labels_trainData[0][0].shape[1]
    获取标签训练数据中第一个样本的长度,并将其保存到 length 变量中。

  7. for label in labels_trainData.keys():
    遍历标签训练数据中的所有键。

  8. labels_trainData[label] = np.reshape(labels_trainData[label], [-1, 1, wide, length])
    对每个标签训练数据进行重塑,将其形状改为 [-1, 1, wide, length],其中 -1 表示自动计算维度大小。

  9. for label in labels_testData.keys():
    遍历标签测试数据中的所有键。

  10. labels_testData[label] = np.reshape(labels_testData[label], [-1, 1, wide, length])
    对每个标签测试数据进行重塑,将其形状改为 [-1, 1, wide, length]

  11. protonets = Protonets((1, wide, length), 10, 5, 5, 60, './log/', 50)
    创建一个 Protonets 类的实例,传入模型的初始化参数。

  12. for n in range(100):
    从0到99的循环中,执行以下代码块。

  13. protonets.train(labels_trainData, class_number_train)
    调用 protonets 实例的 train() 方法进行模型训练,传入标签训练数据和类别数。

  14. if n % 2 == 0 and n != 0:
    如果 n 是偶数且不为0,则执行以下代码块。

  15. torch.save(protonets.model, './log/model_net_' + str(n) + '.pkl')
    保存模型到 './log/model_net_' + str(n) + '.pkl' 的文件路径。

  16. protonets.save_center('./log/model_center_' + str(n) + '.csv')
    调用 protonets 实例的 save_center() 方法,将模型的中心点保存到 './log/model_center_' + str(n) + '.csv'

  17. test_accury = protonets.evaluation_model(labels_testData, class_number_test)
    调用 protonets 实例的 evaluation_model() 方法,对模型进行评估并返回测试准确率,将其保存到 test_accury 变量中。

  18. print(test_accury)
    打印测试准确率。

  19. str_data = str(n) + ',' + str(' test_accury ') + str(test_accury) + '\n'
    构建一个字符串以保存到文件中。

  20. with open('./log/model_step_eval.txt', "a") as f:
    打开一个文件,以追加模式写入。


总结

原型网络(Prototypical Network)是一种用于小样本学习的模型,由Jake Snell等人于2017年提出。它是一种基于元学习(meta-learning)的方法,主要用于解决在具有少量标记样本的情况下进行分类任务的问题。

传统的深度学习模型在处理小样本学习时通常表现不佳,因为它们需要大量的标记样本来进行训练。然而,在现实世界中,我们往往只有少量标记样本可用。原型网络通过引入一个用于表示类别的中心向量(原型)的概念,解决了这个问题。

原型网络的功能和优势如下:

  1. 小样本学习:原型网络适用于具有少量标记样本的分类任务,可以在只有几个样本可用时进行准确的分类。

  2. 元学习能力:原型网络通过学习类别的原型向量,能够在遇到新类别时进行快速学习,从而实现元学习的目标。

  3. 欧氏距离度量:原型网络使用欧氏距离来度量样本与原型之间的相似性,从而进行分类推断。这种度量方式非常直观和可解释,使得模型更易于理解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值