myquant量化怎样做日内回转交易?

在myquant量化平台上进行日内回转交易,需要掌握相应的代码实现。通过量化接口API,可以提升交易的灵活性和安全性,满足更多交易需求。如需了解更多交易接口API详情,可参考https://gitee.com/l2gogogo。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果我们想在myquant量化平台上做日内回转交易,那我们首先要掌握一组代码:

# coding=utf-8
from __future__ import print_function, absolute_import, unicode_literals
try:
    import talib
except:
    print('请安装TA-Lib库')
from gm.api import *
'''
本策略首先买入SHSE.600000股票10000股
随后根据60s的数据来计算MACD(12,26,9)线,并在MACD>0的时候买入100股,MACD<0的时候卖出100股
但每日操作的股票数不超过原有仓位,并于收盘前把仓位调整至开盘前的仓位
回测数据为:SHSE.600000的60s数据
回测时间为:2017-09-01 08:00:00到2017-10-01 16:00:00
'''
def init(context):
    # 设置标的股票
    context.symbol = 'SHSE.600000'
    # 用于判定第一个仓位是否成功开仓
    context.first = 0
    # 订阅浦发银行, bar频率为1min
    subscribe(symbols=context.symbol, frequency='60s', count=35)
    # 日内回转每次交易100股
    context.trade_n = 100
    # 获取昨今天的时间
    context.day = [0, 0]
    # 用于判断是否触发了回转逻辑的计时
    context.ending = 0
def on_bar(context, bars):
    bar = bars[0]
    if context.first == 0:
        # 最开始配置仓位
        # 需要保持的总仓位
        context.total = 10000
        # 购买10000股浦发银行股票
        order_volume(symbol=context.symbol, volume=context.total, side=PositionSide_Long,
                     order_type=OrderType_Market, position_effect=PositionEffect_Open)
        print(context.symbol, '以市价单开多仓10000股')
        context.first = 1.
        day = bar.bob.strftime('%Y-%m-%d')
        context.day[-1] = day[-2:]
        # 每天的仓位操作
        context.turnaround = [0, 0]
        return
    # 更新最新的日期
    day = bar.bob.strftime('%Y-%m-%d %H:%M:%S')
    context.day[0] = bar.bob.day
    # 若为新的一天,获取可用于回转的昨仓
    if context.day[0] != context.day[-1]:
        context.ending = 0
        context.turnaround = [0, 0]
    if context.ending == 1:
        return
    # 若有可用的昨仓则操作
    if context.total >= 0:
        # 获取时间序列数据
        symbol = bar['symbol']
        recent_data = context.data(symbol=symbol, frequency='60s', count=35,
日内回转交易是指在同一交易日内进行买卖交易的一种交易策略。它主要通过观察股票或其他金融资产的价格波动来寻找短期交易机会,以追求快速利润。 Python是一种常用的编程语言,在日内回转交易中可以运用Python进行数据分析、交易策略的开发和实施。使用Python的原因是因为它具有较强的数据处理能力和广泛的金融量化交易库和工具,如pandas、numpy、matplotlib等。 在实施日内回转交易的过程中,首先需要获取市场的实时数据,例如股票的价格变动、交易量等。可以使用Python来进行数据的获取、清洗、整理和存储。可以从金融数据供应商处获取数据,或者使用各种API接口。 然后,需要通过分析市场数据来寻找交易机会。可以使用Python进行数据分析、价格走势预测、技术指标计算等。可以使用pandas和numpy等库进行数据处理,使用matplotlib进行图表展示。还可以使用机器学习和深度学习的方法来进行模型建立和预测。 在找到交易机会后,可以使用Python编写交易策略,并使用量化交易库来执行实际的交易量化交易库通常提供了一系列的交易函数和工具,可以方便地进行订单的下单、撤单、成交查询等操作。 最后,需要对交易策略进行回测和优化。回测是指使用历史市场数据对交易策略进行模拟和验证,以评估其盈利能力和风险水平。可以使用Python编写回测框架,并利用历史数据进行回测,通过统计指标来评估交易策略的表现。 总而言之,使用Python进行日内回转交易可以有效地处理大量金融数据、开发和实施交易策略,并进行回测和优化,从而提高交易效率和盈利能力。但需要注意的是,日内回转交易存在较高的风险,投资者需要根据自身情况和风险承受能力进行决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值