论文:FSGAN: Subject Agnostic Face Swapping and Reenactment
官网:FSGAN: Subject Agnostic Face Swapping and Reenactment - Yuval Nirkin
Github:GitHub - YuvalNirkin/fsgan: FSGAN - Official PyTorch Implementation
ICCV2019
论文提出了一种新的换脸(swapping )和再现(reenactment )的方法FSGAN,可以对图片和视频实现换脸操作。在v100显卡上,reenactment 可以达到30fps,swapping 可以达到10fps。
主要贡献:
(1)首次处理姿态,表情,人物ID的信息,并且不需要人物对的训练就取得了非常高的质量。
(2)提出了基于三角剖分(Delaunay Triangulation )和质心坐标(barycentric coordinates )解决多视角情况下的相同人脸的插值问题。
(3)提出了stepwise consistency loss 训练人脸再现,提出了Poisson blending loss 训练生成图片和原始图片的融合。
整体流程:
首先根据source图像Is和目标target图像It,基于3d人脸landmark检测器,分别提取原图和目标图的人脸框,landmark,欧拉角,这3个指标。然后使用一个reenactment再现人脸姿态的网络,通过source图像生成和target图像人脸欧拉角一样的图片Ir。然后通过一个分割segmentation的模型,分别对生成的图片Ir和目标图片It进行分割操作。得到人脸和头发的mask区域。然后通过一个inpainting修复网络,对人脸区域进行修复,得到Ic。最后基于一个blending融合网络,基于目标图,修复体,mask图,进行融合,得到最终换脸后输出图Ib。
损失函数:
perceptual loss :
Reconstruction loss :
Adversarial loss :
reenactment loss , segmentation loss:
Face view interpolation loss:
Face inpainting loss:
Face blending loss:
实验结果:
总结:
(1)换脸的五官效果,好于faceshifter