face-swap方法之FSGAN

论文:FSGAN: Subject Agnostic Face Swapping and Reenactment

官网:FSGAN: Subject Agnostic Face Swapping and Reenactment - Yuval Nirkin

Github:GitHub - YuvalNirkin/fsgan: FSGAN - Official PyTorch Implementation

GitHub - 1adrianb/2D-and-3D-face-alignment: This repository implements a demo of the networks described in "How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks)" paper.

ICCV2019

论文提出了一种新的换脸(swapping )和再现(reenactment )的方法FSGAN,可以对图片和视频实现换脸操作。在v100显卡上,reenactment 可以达到30fps,swapping 可以达到10fps。

主要贡献:

(1)首次处理姿态,表情,人物ID的信息,并且不需要人物对的训练就取得了非常高的质量。

(2)提出了基于三角剖分(Delaunay Triangulation )和质心坐标(barycentric coordinates )解决多视角情况下的相同人脸的插值问题。

(3)提出了stepwise consistency loss 训练人脸再现,提出了Poisson blending loss 训练生成图片和原始图片的融合。

整体流程:

首先根据source图像Is和目标target图像It,基于3d人脸landmark检测器,分别提取原图和目标图的人脸框,landmark,欧拉角,这3个指标。然后使用一个reenactment再现人脸姿态的网络,通过source图像生成和target图像人脸欧拉角一样的图片Ir。然后通过一个分割segmentation的模型,分别对生成的图片Ir和目标图片It进行分割操作。得到人脸和头发的mask区域。然后通过一个inpainting修复网络,对人脸区域进行修复,得到Ic。最后基于一个blending融合网络,基于目标图,修复体,mask图,进行融合,得到最终换脸后输出图Ib。

损失函数:

perceptual loss :

Reconstruction loss :

Adversarial loss :

reenactment loss , segmentation loss:

Face view interpolation loss:

Face inpainting loss:

Face blending loss:

实验结果:

总结:

(1)换脸的五官效果,好于faceshifter

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值