例1
函数 f ( x ) f(x) f(x)在 [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导, f ( 0 ) = e , f ( 1 ) = 1 f(0)=e,f(1)=1 f(0)=e,f(1)=1,
求证: ∃ ξ ∈ ( 0 , 1 ) \exist\xi \in (0,1) ∃ξ∈(0,1)使得 f ( ξ ) + f ′ ( ξ ) = 0 f(\xi)+f'(\xi)=0 f(ξ)+f′(ξ)=0。
解:
\qquad 令 F ( x ) = e x f ( x ) F(x)=e^xf(x) F(x)=exf(x)
F ( 0 ) = e 0 f ( 0 ) = e , F ( 1 ) = e 1 f ( 1 ) = e \qquad F(0)=e^0f(0)=e,F(1)=e^1f(1)=e F(0)=e0f(0)=e,F(1)=e1f(1)=e
∵ F ( x ) \qquad \because F(x) ∵F(x)在 [ 0 ,