罗尔中值定理习题

微分中值定理之罗尔中值定理

例1

函数 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导, f ( 0 ) = e , f ( 1 ) = 1 f(0)=e,f(1)=1 f(0)=e,f(1)=1
求证: ∃ ξ ∈ ( 0 , 1 ) \exist\xi \in (0,1) ξ(0,1)使得 f ( ξ ) + f ′ ( ξ ) = 0 f(\xi)+f'(\xi)=0 f(ξ)+f(ξ)=0

解:
\qquad F ( x ) = e x f ( x ) F(x)=e^xf(x) F(x)=exf(x)

F ( 0 ) = e 0 f ( 0 ) = e , F ( 1 ) = e 1 f ( 1 ) = e \qquad F(0)=e^0f(0)=e,F(1)=e^1f(1)=e F(0)=e0f(0)=e,F(1)=e1f(1)=e

∵ F ( x ) \qquad \because F(x) F(x) [ 0 ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值