Python银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机svm分析营销活动数据

最近我们被客户要求撰写关于银行机器学习的研究报告,包括一些图形和统计输出。银行数据集

我们的数据集描述

该数据与银行机构的直接营销活动相关,营销活动基于电话。通常,需要与同一客户的多个联系人联系,以便访问产品(银行定期存款)是否会(“是”)或不会(“否”)订阅。
y - 客户是否订阅了定期存款?(二进制:'是','否')

 视频:从决策树到随机森林:R语言信用卡违约分析信贷数据实例

从决策树到随机森林:R语言信用卡违约分析信贷数据实例

,时长10:11

我们的目标是选择最好的回归模型来让客户订阅或不订阅定期存款。我们将使用如下算法:

  • 线性回归
  • 随机森林回归
  • KNN近邻
  • 决策树
  • 高斯朴素贝叶斯
  • 支持向量机

选择最佳模型的决定将基于:

  • 准确性
  • 过采样

数据准备

在本节中,我们加载数据。我们的数据有 45211 个变量。

输入变量:
银行客户数据
1 - 年龄(数字)
2 - 工作:工作类型(分类:'行政'、'蓝领'、'企业家'、'女佣'、'管理'、'退休'、'自雇'、'服务'、'学生'、'技术员'、'失业'、'未知')
3 - 婚姻:婚姻状况(分类:'离婚'、'已婚'、'单身'、'不详';注:'离婚'指离婚或丧偶)。
4 - 教育(分类:'基础4年'、'基础6年'、'基础9年'、'高中'、'文盲'、'专业课程'、'大学学位'、'未知')
5 - 违约:是否有违约的信贷?(分类: '没有', '有', '未知')
6-住房:是否有住房贷款?(分类: '否', '是', '未知')
7 - 贷款:有个人贷款吗?
8 - contact: 联系通信类型(分类:'手机', '电话')。
9 - 月:最后一次联系的年份月份(分类:'一月', '二月', '三月', ..., '十一月', '十二月')
10 - day_of_week:最后一次联系的星期(分类:'mon', 'tue', 'wed', 'thu', 'fri')
11 - 持续时间:最后一次联系的持续时间,以秒为单位(数字)。
12 - 活动:在这个活动期间为这个客户进行的接触次数(数字,包括最后一次接触)。
13 - pdays: 在上次活动中最后一次与客户联系后的天数(数字,999表示之前没有与客户联系)。
14 - 以前:在这次活动之前,为这个客户进行的接触次数(数字)。
15 - 结果:上次营销活动的结果(分类:"失败"、"不存在"、"成功")。
社会和经济背景属性
16 - emp.var.rate:就业变化率--季度指标(数值)。
17 - cons.price.idx:消费者价格指数--月度指标(数值)。
18 - cons.conf.idx:消费者信心指数--月度指标(数字)。
19 - euribor3m:银行3个月利率--每日指标(数值)
20 - nr.employed: 雇员人数 - 季度指标(数字)

输出变量(所需目标):

  •  y -  客户是否认购了定期存款?(二进制: '是', '否')

data.head(5)

我们的下一步是查看变量的形式以及是否存在缺失值的问题。

df1 = data.dtypes
df1
 

df2 = data.isnull().sum() 
df2
 

我们的下一步是计算所有变量的值。

data['y'].value_counts()
 

data['job'].value_counts()
 

data['marital'].value_counts()
 

data['education'].value_counts()
 

data['housing'].value_counts()
 

data['loan'].value_counts()
 

data['contact'].value_counts()
 

data['month'].value_counts()
 

data['poutcome'].value_counts()
 

描述性统计

数值总结

data.head(5)

改变因变量 y 的值。代替 no - 0 和代替 yes - 1。

data['y'] = data['y'].map({'no': 0, 'yes': 1})
data.columns
 

对于我们的每个变量,我们绘制一个箱线图来查看是否有任何可见的异常值。

plt.figure(figsize=[10,25])
ax = plt.subplot(611)
sns.boxplot(data['age'],orient="v")

我们可以看到许多可见的异常值,尤其是在 balance 、 campaign 、 pdays 的情况下。在 pdays ,我们可以看到很多变量都在分位数范围之外。这个变量是一个特例,它被解码为 -1,这就是我们的图看起来像这样的原因。在表示变量之前的箱线图的情况下,它表示在此活动之前执行的联系数量,在这种情况下,我们还可以注意到许多超出分位数范围的值。

直方图

我们的下一步是查看连续变量的分布和直方图
我们可以看到没有一个变量具有正态分布。

plt.figure(figsize=[10,20])
plt.subplot(611)
g = sns.distplot(data["age"], color="r")
 

 

 

 

 

我们的下一步是查看因变量 y 与每个变量或连续变量之间的关系。

g = sns.FacetGrid(data, col='y',size=4)
g.map
 

从这些变量中我们可以得到的最有趣的观察是,大多数说不的人年龄在20-40岁之间,在月底的第20天,大多数人也拒绝了这个提议。
 

分类总结

我们制作仅包含分类变量的数据子集,以便更轻松地绘制箱线图

data_categorical = data[['job',
 'marital',
 'education',
 'default', 'housing',
 'loan','month', 'y']]

 

我们还查看了分类变量,看看是否有一些有趣的特征
从上面的条形图中可以看出,最有趣的结果来自变量:婚姻状况、教育和工作。
从代表婚姻状况的图表来看,大多数人都已婚。
正如我们在代表教育的图表上看到的那样 - 最大的是接受过中等教育的人数。
在约伯的情况下,我们可以看到大多数人都有蓝领和管理工作。

我们还想在马赛克图上查看我们的分类变量与 y 变量之间的关系。

plt.rcParams['font.size'] = 16.0

正如我们所见,大多数人都拒绝了该提议。就地位而言,已婚的人说“不”最多。

在可变违约的情况下,大多数没有违约信用的人也拒绝了该提案。

大多数有住房贷款的人也拒绝了该提议。

大多数没有贷款的人拒绝了这个提议。

数据挖掘

data.head(5)

我们想更深入地研究我们的变量,看看我们是否可以用它们做更多的事情。

我们的下一步是使用 WOE 分析。

finv, IV = datars(data,data.y)
IV

基于对我们有用的 WOE 分析变量是:pdays、previous、job、housing、balance、month、duration、poutcome、contact。
在下一步中,我们决定根据 WOE 结果和变量的先前结果删除无用​​的列。
我们删除的其中一个列是 poutcome,尽管它的 WOE 很高,但我们决定删除它,因为从 prevois 分析中我们看到它有许多未知的观察结果。
在可变持续时间的情况下,我们也可以看到WOE相当大,甚至可以说这个结果有点可疑。我们决定根据 WOE 结果放弃它,因为我们的模型应该根据过去的数据说明是否建议给某个人打电话。
在可变接触的情况下,我们放弃了它,因为对我们来说,接触形式在我们的模型中没有用。
我们还删除了变量 day 因为它对我们没有用,因为这个变量代表天数,而该变量的 WOE 非常小。我们删除的最后一个变量是变量 pdays,尽管这个变量 WOE 的结果非常好,但它对我们来说并不是一个有用的变量。

我们分析中剩下的列:

 

 

特征选择和工程

要执行我们的算法,我们首先需要将字符串更改为二进制变量。


data = pd.get_dummies(data=data, columns = ['job', 'marital', 'education' , 'month'], \
                                   prefix = ['job', 'marital', 'education' , 'month'])

我们更改了列的名称。

data.head(5)

创建虚拟变量后,我们进行了 Pearson 相关。



age = pearsonr(data['age'], data['y'])

sns.heatmap(corr

我们选择了数字列来检查相关性。正如我们所看到的,没有相关性。

我们查看因变量和连续变量之间的关系。


pylab.show()

交叉验证

经过所有准备工作,我们终于可以将数据集拆分为训练集和测试集。

算法的实现

逻辑回归


K=5
kf = KFold(n_splits=K, shuffle=True)

logreg = LogisticRegression()
 [[7872   93]
 [ 992   86]]

 

 [[7919   81]
 [ 956   86]]

 

 [[7952   60]
 [ 971   59]]

 

 [[7871   82]
 [1024   65]]

 

 [[7923   69]
 [ 975   75]]

 

 

决策树


dt2 = tree.DecisionTreeClassifier(random_state=1, max_depth=2)
 [[7988    0]
 [1055    0]]

 [[7986    0]
 [1056    0]]

 [[7920   30]
 [1061   31]]

 [[8021    0]
 [1021    0]]

 [[7938   39]
 [1039   26]]

 

随机森林


random_forest = RandomForestClassifier
 [[7812  183]
 [ 891  157]]

 [[7825  183]
 [ 870  164]]

 [[7774  184]
 [ 915  169]]

 [[7770  177]
 [ 912  183]]

 [[7818  196]
 [ 866  162]]

 

KNN近邻


classifier = KNeighborsClassifier(n_neighbors =13,metric = 'minkowski' , p=2)

print("Mean accuracy: ",accuracyknn/K)
print("The best AUC: ", bestaucknn)
 [[7952   30]
 [1046   15]]

 [[7987   30]
 [1010   15]]

 [[7989   23]
 [1017   13]]

 [[7920   22]
 [1083   17]]

 [[7948   21]
 [1052   21]]

 

高斯朴素贝叶斯


kf = KFold(n_splits=K, shuffle=True)

gaussian = GaussianNB()
 [[7340  690]
 [ 682  331]]

 [[7321  633]
 [ 699  389]]

 [[7291  672]
 [ 693  386]]

 [[7300  659]
 [ 714  369]]

 [[7327  689]
 [ 682  344]]

 
models = pd.DataFrame({
    'Model': ['KNN', 'Logistic Regression', 
              'Naive Bayes', 'Decision Tree','Random Forest'],
    'Score': [ accuracyknn/K, accuracylogreg/K, 
              accuracygnb/K, accuracydt/K, accuracyrf/K],
    'BestAUC': [bestaucknn,bestauclogreg,bestaucgnb,
                bestaucdt,bestaucrf]})

我们看到根据 AUC 值的最佳模型是朴素贝叶斯我们不应该太在意最低的 R2 分数,因为数据非常不平衡(很容易预测 y=0)。在混淆矩阵中,我们看到它预测了漂亮的价值真正值和负值。令我们惊讶的是,决策树的 AUC 约为 50%。

欠采样

我们尝试对变量 y=0 进行欠采样


gTrain, gValid = train_test_split
 

逻辑回归

predsTrain = logreg.predict(gTrainUrandom)
 

predsTrain = logreg.predict(gTrain20Urandom)
 

predsTrain = logreg.predict(gTrrandom)
 

决策树

 

print("Train AUC:", metrics.roc_auc_score(ygTrds))
 

随机森林


print("Train AUC:", metrics.roc_auc_score(ygTr, predsTrain),
      "Valid AUC:", metrics.roc_auc_score(ygVd, preds))
 

KNN近邻


print("Train AUC:", metrics.roc_auc_score(ygTrm, predsTrain),
      "Valid AUC:", metrics.roc_auc_score(ygVal10, preds))
 

高斯朴素贝叶斯


print("Train AUC:", metrics.roc_auc_score(ygTraom, predsTrain),
      "Valid AUC:", metrics.roc_auc_score(ygid, preds))
 

过采样

我们尝试对变量 y=1 进行过采样

feates = datolist()
print(feures)
feaes.remove('y')
 


print(gTrainOSM.shape)
(31945, 39)
smt = SMOT
(32345, 39)
smt = SMOT
(32595, 39)
ygTrain10OSM=gTrain10OSM['y']
gTrain10OSM=gTrain10OSM.drop(columns=['y'])

逻辑回归


print("Train AUC:", metrics.roc_auc_score(ygTrin10SM, predsTrain),
      "Valid AUC:", metrics.roc_auc_score(ygValid, preds))
 

决策树

dt2.fit(,ygTranOS)
predsTrain = dtpreict(TrainOSM)
preds = dt2.predict(gValid)
 

随机森林

random_forest.fit(rainOSM, ygTranOS)
predsTrain = random_forest.prect(gTraiOSM)
p
 

KNN近邻

classifier.fit(granOSM, yTanOSM)
predsTrain = classifier.predict(gTaiSM)
preds = classifier.predict(Vaid)
 

高斯朴素贝叶斯

gaussian.fit(gTriOM, ygrainM)
predsTrain = gaussian.predcti)
 

结论

我们看到欠采样和过采样变量 y 对 AUC 没有太大帮助。


  • 3
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值