OpenCV findContours 与 drawContours 用法

一、获取轮廓--findContours

cv2.findContours() 的第二个参数主要有

  • cv2.RETR_LIST:检测的轮廓不建立等级关系
  • cv2.RETR_TREE:L建立一个等级树结构的轮廓。
  • cv2.RETR_CCOMP:建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。
  • cv2.RETR_EXTERNAL:表示只检测外轮廓

cv2.findContours() 的第三个参数 method为轮廓的近似办法

  • cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1
  • cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
  • cv2.CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法

返回值:image, contours, hierarchy

  • contour返回值
    cv2.findContours()函数首先返回一个list,list中每个元素都是图像中的一个轮廓,用numpy中的ndarray表示。
  • hierarchy返回值
    该函数还可返回一个可选的hiararchy结果,这是一个ndarray,其中的元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0] ~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。

二、绘出轮廓--drawContours

cv2.drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset ]]]]])

  • 第一个参数是指明在哪幅图像上绘制轮廓;
  • 第二个参数是轮廓本身,在Python中是一个list。
  • 第三个参数指定绘制轮廓list中的哪条轮廓,如果是-1,则绘制其中的所有轮廓。后面的参数很简单。其中thickness表明轮廓线的宽度,如果是-1(cv2.FILLED),则为填充模式。绘制参数将在以后独立详细介绍。

三、测试

import cv2

img = cv2.imread('test.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret,binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

_,contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

draw_img0 = cv2.drawContours(img.copy(),contours,0,(0,255,255),3)
draw_img1 = cv2.drawContours(img.copy(),contours,1,(255,0,255),3)
draw_img2 = cv2.drawContours(img.copy(),contours,2,(255,255,0),3)
draw_img3 = cv2.drawContours(img.copy(), contours, -1, (0, 0, 255), 3)


print ("contours:类型:",type(contours))
print ("第0 个contours:",type(contours[0]))
print ("contours 数量:",len(contours))

print ("contours[0]点的个数:",len(contours[0]))
print ("contours[1]点的个数:",len(contours[1]))

cv2.imshow("img", img)
cv2.imshow("draw_img0", draw_img0)
cv2.imshow("draw_img1", draw_img1)
cv2.imshow("draw_img2", draw_img2)
cv2.imshow("draw_img3", draw_img3)

cv2.waitKey(0)
cv2.destroyAllWindows()

#################################
# 输出:
# contours:类型: <class 'list'>
# 第0 个contours: <class 'numpy.ndarray'>
# contours 数量: 3
# contours[0]点的个数: 6
# contours[1]点的个数: 74

`findContours` 和 `drawContours` 是 OpenCV 库中用于轮廓检测和绘制轮廓的函数。 `findContours` 函数用于在图像中查找轮廓。它接受输入图像、轮廓检测模式和轮廓近似方法作为参数,并返回检测到的轮廓。轮廓检测模式决定了如何处理输入图像和输出轮廓的关系,而轮廓近似方法则决定了如何近似表示检测到的轮廓。 一般来说,使用 `findContours` 的基本步骤如下: 1. 首先,准备一个二值化图像,其中包含你想要检测轮廓的对象。 2. 调用 `findContours` 函数,传入二值化图像以及其他参数。 3. `findContours` 函数会返回一个包含所有检测到的轮廓的向量。 4. 可以通过遍历这个向量,对每个轮廓进行进一步的处理或绘制。 `drawContours` 函数用于绘制轮廓。它接受输入图像、待绘制的轮廓、轮廓的索引、绘制颜色和线宽等参数。通过调用 `drawContours` 可以将检测到的轮廓绘制在图像上。 使用 `drawContours` 的基本步骤如下: 1. 准备一个空图像作为绘制目标。 2. 调用 `drawContours` 函数,传入目标图像、待绘制的轮廓、轮廓的索引、绘制颜色和线宽等参数。 3. `drawContours` 函数会将轮廓绘制在目标图像上。 总结起来,`findContours` 用于检测轮廓,而 `drawContours` 用于绘制轮廓。这两个函数常用于图像处理和计算机视觉任务中,如目标检测、图像分割等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_yuki_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值