CS231N 笔记2_损失函数和优化器



多类SVM损失函数,又称hinge loss:计算每个类别的分数和正确类别的差之和
这个函数可以认为是计算得分比正确分类的得分还要大的,以及差不多的。至于数字1,只是一个约定俗成的数字,其本身并不具有特殊意义,其数字的大小会随着W的变化而改变。


SVM loss和softmax的对数似然损失函数的对比:
SVM对边界上及内部(得分大于正确项)的数字敏感,对边界外的数字不作用;而Softmax的对数似然综合考虑所有的得分。
至于哪个比较好,得分情况。如课件中的(10,-100,-100),则SVM较好;如(10,8,8),则应该细细考虑了。


为什么训练网络时需要依据迭代次数减小lr学习率?
因为当lr(学习率)过大,会使loss提高;lr较大,loss无法收敛;loss较小,loss收敛慢。故一般用较大的lr开始训练,在迭代一定次数之后,缩小lr以达到收敛。
另外,较大的lr可以避免一些局部最小点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值