多类SVM损失函数,又称hinge loss:
这个函数可以认为是计算得分比正确分类的得分还要大的,以及差不多的。至于数字1,只是一个约定俗成的数字,其本身并不具有特殊意义,其数字的大小会随着W的变化而改变。
SVM loss和softmax的对数似然损失函数的对比:
SVM对边界上及内部(得分大于正确项)的数字敏感,对边界外的数字不作用;而Softmax的对数似然综合考虑所有的得分。
至于哪个比较好,得分情况。如课件中的(10,-100,-100),则SVM较好;如(10,8,8),则应该细细考虑了。
为什么训练网络时需要依据迭代次数减小lr学习率?
因为当lr(学习率)过大,会使loss提高;lr较大,loss无法收敛;loss较小,loss收敛慢。故一般用较大的lr开始训练,在迭代一定次数之后,缩小lr以达到收敛。
另外,较大的lr可以避免一些局部最小点。
CS231N 笔记2_损失函数和优化器
最新推荐文章于 2024-08-20 16:21:48 发布