相移很简单,就是经过系统后,信号中特定的频率分量,相位会落后多少。
线性相位很简单,就是
θ
=
ω
∗
k
\theta=\omega *k
θ=ω∗k。信号中相位滞后(只考虑因果信号,不可能先于输入)和频率成正比。
群延迟
d
e
l
a
y
=
d
θ
d
ω
delay=\frac{d\theta}{d\omega}
delay=dωdθ,显然线性相位群延迟就等于k,是一个常数,这个常数代表,系统中任何频率分量的延迟时间都是常数。
你去查线性相位很多都会告诉到你这里,但是这是为什么呢?其实很简单,因为这段频率相角转动
θ
\theta
θ花的时间就是
θ
/
ω
\theta/\omega
θ/ω,也就是k嘛。每个频率分量经过k后,都重新回到了和原信号一样的相位,从这一时刻开始就和原信号相同了。
但是,这不是说群延迟(斜率)就是回到原信号相位需要的时间,它既然是个斜率,肯定是什么的变化率,我们知道不管什么系统相位特性一定过原点(因为角速度为0,那就是不会转,相位和原本肯定一样),你考虑从原点到一个点,如果是下凸函数,最开始斜率就是0,然后斜率一直单调变大,就是说频率越快,延迟时间越长,下凸函数也是一个道理。所以它反应的是延迟时间的一个变化率。