损失函数的计算-LOSS(MSE、交叉熵)

MSE,即均方差,用于度量预测值与真实值之间的差异,学习率对其有调节效果,确保损失值在正数范围内。而CrossEntropyLoss是针对分类问题的损失函数,它衡量模型的不确定性,值越小表示模型预测越不稳定。
摘要由CSDN通过智能技术生成

MSE(均方差)

差的平方的累加,再平均。learningrate对数值比较大的loss起到调节作用。被除数要是正数!

 

Cross Entropy Loss(交叉熵)-专门应对分类问题,衡量不确定性。是负数!越小,越不稳定。 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值