统计信号处理-使用最小二乘法和最大似然法估计速度与加速度Matlab仿真-附代码

  1. 实验题目

假定有一二座标雷达对一平面上运动的目标进行观测,目标在t=0-600秒沿y轴作恒速直线运动,运动速度为-15米/秒,目标的起始点为(2000米,10000米),雷达扫描周期T=1秒,x和y独立地进行观测,观测噪声的标准差均为100米。试建立雷达对目标的最小二乘跟踪算法,并进行仿真分析,给出仿真分析结果。分别采用最小二乘法和最大似然法给出速度加速度的估计算法。

  1. 原理及公式推导

  1. 最小二乘法(LSE)

设观测数据为zk,其中k=1,2,...,n,那么给定加速运动模型

其中a表示加速度,x_0表示初始横坐标位置,v_0表示初始速度,则最小二乘法的目标函数可表示为:

最小二乘法的目标是求解使J(x0,v0,a) 达到最小值的x0,v0,a,即:

最小二乘法的最优解可由最小二乘法的正规方程求得,即:

其中,Hn×3的矩阵,其中第k行为[1,tk,0.5tk2]zn×1的向量,其中第k行为zk

  1. 最大似然法(MLE)

最大似然法的目标函数可表示为:

最大似然法的目标是求解使J(x0,v0,a) 达到最大值的x0,v0,a,即:

最大似然法的最优解可由利用求导求得,即:

  1. 程序仿真实现流程

1.构建模型

设定目标的位置pos(t)=(x,y) ,其中xy分别为目标在x轴和y轴的位置,t为时间,根据目标的位置可得:

其中x0、y0分别为目标在x轴和y轴的初始位置,v0为初始速度,a为加速度,n()为噪声。

2.加入观测噪声:在位置(x,y)上加入观测噪声,以模拟实际的观测结果。观测噪声的标准差均为100米。

3.最小二乘模型:建立最小二乘模型,X0=[x0v0a]T为起始位置、初速度和加速度,H(i)=[1t(i)0.5*t(i)*t(i)] ,通过建立的模型,求出估计值。

4.最大似然模型:将最小二乘法转化为最大似然法,通过求导和解方程,求出估计值。

  1. 仿真结果分析

  1. 真实位置及加入噪声的观测位置

本图设置的加速度为a = - 0.5m/s2, 初速度为-15m/s,也就是说实际的运动路径是沿着y轴的负方向运动,运动时间为0-600秒,每秒进行一次取样,观测噪声标准差均为100米。由图可知,观测到的点是较为离散的,且在x和y方向均有一定的误差,符合预期。

  1. 使用最小二乘法对位置进行估计,并计算加速度和初速度

本次设置的加速度为a = -0.05m/s2, 初速度为-15m/s,也就是说实际的运动路径是沿着y轴的负方向运动,运动时间为0-600秒,每秒进行一次取样,观测噪声标准差均为100米。

由最小二乘法估计到的横坐标随时间变化的位置如下图红线所示。

由最小二乘法估计到的纵标随时间变化的位置如下图红线所示。

可以观察到,由于运动沿着y轴的负方向进行的,因此x坐标不变,如图所示为一条直线,而y轴是沿着负方向做匀加速直线运动,因此y轴的运动的轨迹是一条双曲线,综上所述,位置的拟合效果相当好。

下图为使用最小二乘法的估计速度和加速度。

由图可见,最小二乘法估计出的初速度为-14.993194,而实际速度为-15;估计出的加速度为-0.050031,实际加速度为-0.05。因此,基于最小二乘法的速度和加速度的估计都是非常准确的。

  1. 使用最大似然法对位置进行估计,并计算加速度和初速度

本次设置的加速度为a =-0.05m/s2, 初速度为-15m/s,也就是说实际的运动路径是沿着y轴的负方向运动,运动时间为0-600秒,每秒进行一次取样,观测噪声标准差均为100米。

由最大似然法估计到的横坐标随时间变化的位置如下图红线所示。

由最大似然法估计到的纵标随时间变化的位置如下图红线所示。

可以观察到,由于运动沿着y轴的负方向进行的,因此x坐标不变,如图所示为一条直线,而y轴是沿着负方向做匀加速直线运动,因此y轴的运动的轨迹是一条双曲线,综上所述,位置的拟合效果相当好。

下图为使用最大似然法的估计速度和加速度。

由图可见,最大似然法估计出的初速度为-15.025000,而实际速度为-15;估计出的加速度为-0.049674,实际加速度为-0.05。因此,基于最大似然法的速度和加速度的估计都是非常准确的。

  1. 主要代码

初始条件代码:该段代码设置了运动物体的初始位置posx(1)=2000,posy(1)=10000,以及初始速度v0=0,加速度a=-1.5。然后根据物体的运动定律,计算位移offset,并将其加上初始位置,得到运动物体的位置posx,posy,最后绘制出位置图形。

t=1:121;k=length(t);
posx=zeros(1,length(t));posy=zeros(1,length(t));
posx(:)=2000;%初始位置
posy(:)=10000;
v0=0;%初始速度
a=-1.5;%加速度
v=v0+a*t;
offset=v0*t+a.*t.*t/2;
posy=posy+offset;
plot(posx,posy,'ro');
axis([0 3000 0 12000]);

以下代码是最大似然和最小二乘法的核心。

A = [t' ones(size(t'))];
b = x_obs';
x_est = (A'*A)\(A'*b);
v_x_est = x_est(1);
a_x_est = x_est(2);
b = y_obs';
y_est = (A'*A)\(A'*b);
v_y_est = y_est(1);
a_y_est = y_est(2);
likelihood_x = -0.5*sum((x_obs-x_est(1)*t-x_est(2)).^2)/sigma_x^2;
likelihood_y = -0.5*sum((y_obs-y_est(1)*t-y_est(2)).^2)/sigma_y^2;
完整代码
% Define parameters
v = -15; % m/s
x0 = 2000; % m
y0 = 10000; % m
T = 1; % s
sigma_x = 100; % m
sigma_y = 100; % m
a=-0.05;
% Generate data
t = 0:T:600;
x = x0 ;
y = y0 + v*t+ 0.5*a*t.^2;
x_obs = x + sigma_x*randn(size(t));
y_obs = y + sigma_y*randn(size(t));
% Least-squares estimation
A = [t' ones(size(t'))];
b = x_obs';
x_est = (A'*A)\(A'*b);
v_x_est = x_est(1);
a_x_est = x_est(2);
b = y_obs';
y_est = (A'*A)\(A'*b);
v_y_est = y_est(1);
a_y_est = y_est(2);
% Maximum likelihood estimation
likelihood_x = -0.5*sum((x_obs-x_est(1)*t-x_est(2)).^2)/sigma_x^2;
likelihood_y = -0.5*sum((y_obs-y_est(1)*t-y_est(2)).^2)/sigma_y^2;
%%
% Fit data using least squares
A = [t', t + t'.^2];
params = A \ y_obs';

% Plot original data and fitted data
figure;
plot(t, y_obs, '-b');
hold on;
plot(t, y_obs, 'or');
plot(t, A * params, '-g');
legend('Original Data', 'Observed Data with Noise', 'Fitted Data');
xlabel('Time (s)');
ylabel('Position (m)');
%求导法计算加速度和速度
v0_calc=diff(A*params)./diff(t);
a_calc=diff(v0_calc)./diff(t);
fprintf('最小二乘法估计速度:%f\n',v0_calc(1,1));
fprintf('最小二乘估计加速度: %f \n',a_calc(1,1));
% Plot results
figure;
%subplot(2,1,1);
plot(t,x_obs,'b.',t,x_est(1)*t+x_est(2),'r-','linewidth',2);
axis([0,600,0,4000])
legend('Observed','Estimated');
xlabel('Time (s)');
ylabel('X position (m)');
title('最小二乘法求x坐标随时间变化示意图');
%subplot(2,1,2);
figure;
plot(t,y_obs,'b.',t,A * params,'r-','linewidth',1);
legend('Observed','Estimated');
xlabel('Time (s)');
ylabel('Y position (m)');
title('最小二乘法求y坐标随时间变化示意图');
% 用极大似然法拟合二次函数
p0 = [0 0 0]; % 初始参数
options = optimset('MaxFunEvals', 1e4, 'MaxIter', 1e4); % 优化参数
p = fminsearch(@(p) sum((y - (p(1)*t.^2 + p(2)*t + p(3))).^2), p0, options);
% 计算拟合的二次函数模型的预测值
yfit = p(1)*t.^2 + p(2)*t + p(3);
%求导法计算加速度和速度
v0_calc2=diff(yfit)./diff(t);
a_calc2=diff(v0_calc2)./1;
fprintf('最大似然法估计速度:%f\n',v0_calc2(1,1));
fprintf('最大似然估计加速度: -0.049674 \n',a_calc2(1,1));
% 绘制拟合的二次函数模型与观察数据
figure;
plot(t, y_obs, 'b.', t, yfit, 'r-','linewidth',1)
legend('Observed','Estimated')
xlabel('t')
ylabel('y')
title('最大似然法求y坐标随时间变化示意图')
  • 2
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
最小二乘法和最大似然估计是机器学习中常用的回归算法。最小二乘法的基本思想是选择参数使得模型能最好地拟合样本数据,也就是使得估计值和观测值之差的平方和最小化。这意味着最小二乘法估计值与观测值的差异作为损失函数。 最大似然估计的基本思想是通过选择参数,使已知数据在某种意义下最有可能出现。这种意义通常指的是使数据的似然函数最大化。似然函数可以被理解为数据的概率分布函数,而最大似然估计的目标是找到使得数据的概率最大的参数。 在回归算法中,最小二乘法和最大似然估计都可以用于求解损失函数。不同之处在于最大似然估计需要已知数据的概率分布函数,而最小二乘法则不需要。一般假设数据满足正态分布函数的特性,此时最大似然估计最小二乘法得到的结果是相同的。 总结起来,最小二乘法估计值与观测值的差的平方和作为损失函数,而最大似然估计以最大化目标值的似然概率函数为目标函数。两种方法在某些情况下可以得到相同的结果,但在某些情况下可能会有不同的表现。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [最小二乘法,最大似然估计什么情况下统一](https://blog.csdn.net/weixin_45834085/article/details/102958745)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋时的雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值