论文链接:https://arxiv.org/abs/1807.06521v2
代码:https://github.com/luuuyi/CBAM.PyTorch
(最近在看人脸识别的轻量级网络,然后看到了与cbam相关的内容,就想尝试以下效果,是否有助于提升模型人脸识别的能力;)
论文的贡献:作者提出了卷积层的注意力模块(Convolutional Block Attention Module,CBAM),这个模块分为两个部分:channel和spatial。通过与输入特征相乘,自适应的对特征进行提纯(refinement)。这种注意力模块的优点就是:1,可以和任何CNN结构一起使用,不会增加额外的开销,并且实现的是端对端的训练。然后作者在分类(ImageNet-1K)和目标检测数据集(MS COCO, VOC2007)上做实验,效果都还很不错。
作者提出的CBAM框图:
通过作者提出的CBAM模块,让卷积网络可以学习“what”和“where”是关注的焦点;
作者新想法的