TensorRT基础知识及应用【C++深度学习部署(十)】

一、准备知识

NVIDIA® TensorRT™是一个用于高性能深度学习的推理框架。它可以与TensorFlow、PyTorch和MXNet等训练框架相辅相成地工作。

1.1 环境配置

A. CUDA Driver
  • 使用CUDA前,要求GPU驱动与cuda 的版本要匹配,匹配关系如下:

    参考:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions

  • 检查机器建议的驱动

有recommended这一行中的是系统推荐安装的nvidia-driver-525驱动版本

$ ubuntu-drivers devices

// 比如我的机器输出如下

(base) enpei@enpei-ubutnu-desktop:~$ ubuntu-drivers devices
== /sys/devices/pci0000:00/0000:00:01.0/0000:01:00.0 ==
modalias : pci:v000010DEd00001C03sv000010DEsd000011D7bc03sc00i00
vendor   : NVIDIA Corporation
model    : GP106 [GeForce GTX 1060 6GB]
driver   : nvidia-driver-525 - distro non-free recommended
driver   : nvidia-driver-510 - distro non-free
driver   : nvidia-driver-390 - distro non-free
driver   : nvidia-driver-520 - third-party non-free
driver   : nvidia-driver-515-server - distro non-free
driver   : nvidia-driver-470 - distro non-free
driver   : nvidia-driver-418-server - distro non-free
driver   : nvidia-driver-470-server - distro non-free
driver   : nvidia-driver-525-server - distro non-free
driver   : nvidia-driver-515 - distro non-free
driver   : nvidia-driver-450-server - distro non-free
driver   : xserver-xorg-video-nouveau - distro free builtin

上面信息提示了,当前我使用的GPU是[GeForce GTX 1060 6GB],他推荐的(recommended)驱动是nvidia-driver-525

  • 安装指定版本

    $ sudo apt install nvidia-driver-525
    
  • 重启

    $ sudo reboot
    
  • 检查安装

    $ nvidia-smi
    
    (base) enpei@enpei-ubutnu-desktop:~$ nvidia-smi
    Mon Feb  2 12:23:45 2023
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 525.78.01    Driver Version: 525.78.01    CUDA Version: 12.0     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  NVIDIA GeForce ...  Off  | 00000000:01:00.0  On |                  N/A |
    | 40%   29C    P8     9W / 120W |    239MiB /  6144MiB |      0%      Default |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |    0   N/A  N/A      1079      G   /usr/lib/xorg/Xorg                102MiB |
    |    0   N/A  N/A      1387      G   /usr/bin/gnome-shell              133MiB |
    +-----------------------------------------------------------------------------+
    

    可以看到当前安装的驱动版本是525.78.01,需要注意CUDA Version: 12.0指当前驱动支持的最高版本。

B. CUDA
  • 选择对应版本:https://developer.nvidia.com/cuda-toolkit-archive

  • 根据提示安装,如我选择的11.8 版本的:https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=20.04&target_type=deb_local

    wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
    sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
    wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda-repo-ubuntu2004-11-8-local_11.8.0-520.61.05-1_amd64.deb
    sudo dpkg -i cuda-repo-ubuntu2004-11-8-local_11.8.0-520.61.05-1_amd64.deb
    sudo cp /var/cuda-repo-ubuntu2004-11-8-local/cuda-*-keyring.gpg /usr/share/keyrings/
    sudo apt-get update
    sudo apt-get -y install cuda
    
  • 安装nvcc

    sudo apt install nvidia-cuda-toolkit
    
  • 重启

C. cuDNN
  • 下载安装包:访问:https://developer.nvidia.com/zh-cn/cudnn,选择对应的版本,下载对应的安装包(建议使用Debian包安装)

    比如我下载的是:Local Installer for Ubuntu20.04 x86_64 (Deb),下载后的文件名为cudnn-local-repo-ubuntu2004-8.7.0.84_1.0-1_amd64.deb

  • 安装:

    参考链接:https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html

    # 注意,运行下面的命令前,将下面的 X.Y和v8.x.x.x 替换成自己具体的CUDA 和 cuDNN版本,如我的CUDA 版本是11.8,cuDNN 版本是 8.7.0.84
    
    sudo dpkg -i cudnn-local-repo-${OS}-8.x.x.x_1.0-1_amd64.deb
    # 我的:sudo dpkg -i cudnn-local-repo-ubuntu2004-8.7.0.84_1.0-1_amd64.deb
    
    sudo cp /var/cudnn-local-repo-*/cudnn-local-*-keyring.gpg /usr/share/keyrings/
    sudo apt-get update
    
    
    sudo apt-get install libcudnn8=8.x.x.x-1+cudaX.Y
    # 我的:sudo apt-get install libcudnn8=8.7.0.84-1+cuda11.8
    
    
    sudo apt-get install libcudnn8-dev=8.x.x.x-1+cudaX.Y
    # 我的:sudo apt-get install libcudnn8-dev=8.7.0.84-1+cuda11.8
    
    
    sudo apt-get install libcudnn8-samples=8.x.x.x-1+cudaX.Y
    # 我的:sudo apt-get install libcudnn8-samples=8.7.0.84-1+cuda11.8
    
  • 验证

    # 复制文件
    cp -r /usr/src/cudnn_samples_v8/ $HOME
    cd  $HOME/cudnn_samples_v8/mnistCUDNN
    make clean && make
    ./mnistCUDNN
    

    可能报错:test.c:1:10: fatal error: FreeImage.h: No such file or directory

    解决办法:sudo apt-get install libfreeimage3 libfreeimage-dev

D. TensorRT

TensorRT是什么:

  • TensorRT是NVIDIA推出的深度学习推理SDK,能够在NVIDIA GPU上实现低延迟、⾼吞吐量的部署。
  • TensorRT包含⽤于训练好的模型的优化器,以及⽤于执⾏推理的runtime。

在这里插入图片描述

TensorRT优化策略:

  • 消除不使⽤输出的层;
  • 卷积、偏置和ReLU运算的融合;
  • 具有⾜够相似的参数和相同的源张量的操作的集合(例如,GoogleNet v5的inception模块中的1x1卷积);
  • 通过将层输出定向到正确的最终⽬的地来合并连接层;
  • 如果有必要,构造器还会修改权重的精度。当⽣成8位整数精度的⽹络时,它使⽤⼀个称为校准的过程来确定中间激活的动态范围,从⽽确定量化所需的适当⽐例因⼦;
  • 此外,构建阶段还在虚拟数据上运⾏层,以从其内核⽬录中选择最快的,并在适当的地⽅执⾏权重预格式化和内存优化。

在这里插入图片描述



在这里插入图片描述

TensorRT优化策略:

  • TensorRT需要在⽬标GPU设备上实际运⾏来选择最优算法和配置(根据硬件、软件环境版本等)
  • 所以TensorRT⽣成的模型迁移到别的设备或其他版本的TensorRT下不⼀定能运⾏。

如何使⽤TensorRT?

在这里插入图片描述


模型转换:

在这里插入图片描述

插件Plugin

在这里插入图片描述

  • 访问:https://developer.nvidia.com/nvidia-tensorrt-8x-download 下载对应版本的TensorRT

    比如我选择的是 8.5.3版本,下载完文件名为:nv-tensorrt-local-repo-ubuntu2004-8.5.3-cuda-11.8_1.0-1_amd64.deb

  • 安装:

    参考地址:https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-debian

    # 替换成自己的OS 和 版本信息
    os="ubuntuxx04"
    tag="8.x.x-cuda-x.x"
    sudo dpkg -i nv-tensorrt-local-repo-${os}-${tag}_1.0-1_amd64.deb
    # 我的:sudo dpkg -i nv-tensorrt-local-repo-ubuntu2004-8.5.3-cuda-11.8_1.0-1_amd64.deb
    sudo cp /var/nv-tensorrt-local-repo-${os}-${tag}/*-keyring.gpg /usr/share/keyrings/
    # 我的:sudo cp /var/nv-tensorrt-local-repo-ubuntu2004-8.5.3-cuda-11.8/*-keyring.gpg /usr/share/keyrings/
    
    sudo apt-get update
    sudo apt-get install tensorrt
    
  • 验证:

    dpkg -l | grep TensorRT
    
    # 输出
    ii  libnvinfer-bin                                    8.5.3-1+cuda11.8                    amd64        TensorRT binaries
    ii  libnvinfer-dev                                    8.5.3-1+cuda11.8                    amd64        TensorRT development libraries and headers
    ii  libnvinfer-plugin-dev                             8.5.3-1+cuda11.8                    amd64        TensorRT plugin libraries
    ii  libnvinfer-plugin8                                8.5.3-1+cuda11.8                    amd64        TensorRT plugin libraries
    ii  libnvinfer-samples                                8.5.3-1+cuda11.8                    all          TensorRT samples
    ii  libnvinfer8                                       8.5.3-1+cuda11.8                    amd64        TensorRT runtime libraries
    ii  libnvonnxparsers-dev                              8.5.3-1+cuda11.8                    amd64        TensorRT ONNX libraries
    ii  libnvonnxparsers8                                 8.5.3-1+cuda11.8                    amd64        TensorRT ONNX libraries
    ii  libnvparsers-dev                                  8.5.3-1+cuda11.8                    amd64        TensorRT parsers libraries
    ii  libnvparsers8                                     8.5.3-1+cuda11.8                    amd64        TensorRT parsers libraries
    ii  tensorrt                                          8.5.3.1-1+cuda11.8                  amd64        Meta package for TensorRT
    

    如果遇到unmet dependencies的问题, 一般是cuda cudnn没有安装好。TensorRT的INCLUDE 路径是 /usr/include/x86_64-linux-gnu/, LIB路径是/usr/lib/x86_64-linux-gnu/,Sample code在/usr/src/tensorrt/samples, trtexec/usr/src/tensorrt/bin下。

1.2 编程模型

TensorRT分两个阶段运行

  • 构建(Build)阶段:你向TensorRT提供一个模型定义,TensorRT为目标GPU优化这个模型。这个过程可以离线运行。
  • 运行时(Runtime)阶段:你使用优化后的模型来运行推理。

构建阶段后,我们可以将优化后的模型保存为模型文件,模型文件可以用于后续加载,以省略模型构建和优化的过程。

二、构建阶段

样例代码:6.trt_basic/src/build.cpp

build.cpp:

/*
TensorRT build engine的过程
1. 创建builder
2. 创建网络定义:builder ---> network
3. 配置参数:builder ---> config
4. 生成engine:builder ---> engine (network, config)
5. 序列化保存:engine ---> serialize
6. 释放资源:delete
*/

#include <iostream>
#include <fstream>
#include <cassert>
#include <vector>

#include <NvInfer.h>

// logger用来管控打印日志级别
// TRTLogger继承自nvinfer1::ILogger
class TRTLogger : public nvinfer1::ILogger
{
    void log(Severity severity, const char *msg) noexcept override
    {
        // 屏蔽INFO级别的日志
        if (severity != Severity::kINFO)
            std::cout << msg << std::endl;
    }
} gLogger;

// 保存权重
void saveWeights(const std::string &filename, const float *data, int size)
{
    std::ofstream outfile(filename, std::ios::binary);  // 以二进制的方式写入文件
    assert(outfile.is_open() && "save weights failed");  // assert断言,如果条件不满足,就会报错
    outfile.write((char *)(&size), sizeof(int));         // 保存权重的大小
    outfile.write((char *)(data), size * sizeof(float)); // 保存权重的数据
    outfile.close();
}

// 读取权重
std::vector<float> loadWeights(const std::string &filename)
{
    std::ifstream infile(filename, std::ios::binary);          // 以二进制的方式读取文件
    assert(infile.is_open() && "load weights failed");
    int size;
    infile.read((char *)(&size), sizeof(int));                // 读取权重的大小
    std::vector<float> data(size);                            // 创建一个vector,大小为size
    infile.read((char *)(data.data()), size * sizeof(float)); // 读取权重的数据
    infile.close();
    return data;
}

int main()
{
    // ======= 1. 创建builder =======
    TRTLogger logger;
    nvinfer1::IBuilder *builder = nvinfer1::createInferBuilder(logger);

    // ======= 2. 创建网络定义:builder ---> network =======

    // 1:显性batch
    // 1 << 0 = 1,<<是二进制移位操作符,左移0位,1 << 0相当于1(y左移x位,相当于y乘以2的x次方)
    // 1U:代表unsigned的1,uint32_t:unsigned int32
    auto explicitBatch = 1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH); // kEXPLICIT_BATCH:0
    // 调用createNetworkV2创建网络定义,参数是显性batch
    nvinfer1::INetworkDefinition *network = builder->createNetworkV2(explicitBatch);

    // 定义网络结构
    // mlp多层感知机:input(1,3,1,1) --> fc1 --> sigmoid --> output (2)

    // 创建一个input tensor ,参数分别是:name, data type, dims
    const int input_size = 3;
    nvinfer1::ITensor *input = network->addInput("data", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4{1, input_size, 1, 1});

    // 创建全连接层fc1
    // weight and bias
    const float *fc1_weight_data = new float[input_size * 2]{0.1, 0.2, 0.3, 0.4, 0.5, 0.6};
    const float *fc1_bias_data = new float[2]{0.1, 0.5};

    // 将权重保存到文件中,演示从别的来源加载权重
    saveWeights("model/fc1.wts", fc1_weight_data, 6);
    saveWeights("model/fc1.bias", fc1_bias_data, 2);

    // 读取权重
    auto fc1_weight_vec = loadWeights("model/fc1.wts");
    auto fc1_bias_vec = loadWeights("model/fc1.bias");

    // 转为nvinfer1::Weights类型,参数分别是:data type, data, size
    // fc1_weight_vec.data(),其中vector类型获取指针用data()
    nvinfer1::Weights fc1_weight{nvinfer1::DataType::kFLOAT, fc1_weight_vec.data(), fc1_weight_vec.size()};
    nvinfer1::Weights fc1_bias{nvinfer1::DataType::kFLOAT, fc1_bias_vec.data(), fc1_bias_vec.size()};

    const int output_size = 2;
    // 调用addFullyConnected创建全连接层,参数分别是:input tensor, output size, weight, bias
    nvinfer1::IFullyConnectedLayer *fc1 = network->addFullyConnected(*input, output_size, fc1_weight, fc1_bias);

    // 添加sigmoid激活层,参数分别是:input tensor, activation type(激活函数类型)
    nvinfer1::IActivationLayer *sigmoid = network->addActivation(*fc1->getOutput(0), nvinfer1::ActivationType::kSIGMOID);

    // 设置输出名字
    sigmoid->getOutput(0)->setName("output");
    // 标记输出,没有标记会被当成顺时针优化掉
    network->markOutput(*sigmoid->getOutput(0));

    // 设定最大batch size
    builder->setMaxBatchSize(1);

    // ====== 3. 配置参数:builder ---> config ======
    // 添加配置参数,告诉TensorRT应该如何优化网络
    nvinfer1::IBuilderConfig *config = builder->createBuilderConfig();
    // 设置最大工作空间大小,单位是字节
    config->setMaxWorkspaceSize(1 << 28); // 256MiB

    // ====== 4. 创建engine:builder ---> network ---> config ======
    nvinfer1::ICudaEngine *engine = builder->buildEngineWithConfig(*network, *config);
    if (!engine)
    {
        std::cerr << "Failed to create engine!" << std::endl;
        return -1;
    }
    // ====== 5. 序列化engine ======
    nvinfer1::IHostMemory *serialized_engine = engine->serialize();
    // 存入文件
    std::ofstream outfile("model/mlp.engine", std::ios::binary);
    assert(outfile.is_open() && "Failed to open file for writing");
    outfile.write((char *)serialized_engine->data(), serialized_engine->size());
    
    // ====== 6. 释放资源 ======
    // 理论上,这些资源都会在程序结束时自动释放,但是为了演示,这里手动释放部分
    outfile.close();

    delete serialized_engine;
    delete engine;
    delete config;
    delete network;
    delete builder;

    std::cout << "engine文件生成成功!" << std::endl;
    
    return 0;
}

构建阶段的最高级别接口是 builderbuilder负责优化一个模型,并产生Engine。通过如下接口创建一个builder

nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(logger);

要生成一个可以进行推理的Engine,一般需要以下三个步骤:

  • 创建一个网络定义
  • 填写builder构建配置参数,告诉构建器应该如何优化模型
  • 调用builder生成Engine

2.1 创建网络定义

NetworkDefinition接口被用来定义模型。如下所示:

// bit shift,移位:y左移N位,相当于 y * 2^N
// kEXPLICIT_BATCH(显性Batch)为0,1U << 0 = 1
// static_cast:强制类型转换
const auto explicitBatch = 1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
nvinfer1::INetworkDefinition* network = builder->createNetworkV2(explicitBatch);

接口createNetworkV2接受配置参数,参数用按位标记的方式传入。比如上面激活explicitBatch,是通过1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH); 将explicitBatch对应的配置位设置为1实现的。在新版本中,请使用createNetworkV2而非其他任何创建NetworkDefinition 的接口。

将模型转移到TensorRT的最常见的方式是以ONNX格式从框架中导出(将在后续课程进行介绍),并使用TensorRT的ONNX解析器来填充网络定义。同时,也可以使用TensorRT的LayerTensor等接口一步一步地进行定义。通过接口来定义网络的代码示例如下:

  • 添加输入层
nvinfer1::ITensor* input = network->addInput("data", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4{1, input_size, 1, 1});
  • 添加全连接层
nvinfer1::IFullyConnectedLayer* fc1 = network->addFullyConnected(*input, output_size, fc1w, fc1b);
  • 添加激活层
nvinfer1::IActivationLayer* relu1 = network->addActivation(*fc1->getOutput(0), nvinfer1::ActivationType::kRELU);

通过调用network的方法,我们可以构建网络的定义。

无论你选择哪种方式,你还必须定义哪些张量是网络的输入和输出。没有被标记为输出的张量被认为是瞬时值,可以被构建者优化掉。输入和输出张量必须被命名,以便在运行时,TensorRT知道如何将输入和输出缓冲区绑定到模型上。示例代码如下:

// 设置输出名字
relu1->getOutput(0)->setName("output");
// 标记输出
network->markOutput(*relu1->getOutput(0));

TensorRT的网络定义不会复制参数数组(如卷积的权重)。因此,在构建阶段完成之前,你不能释放这些数组的内存。

2.2 配置参数

下面我们来添加相关Builder 的配置。createBuilderConfig接口被用来指定TensorRT应该如何优化模型。如下:

nvinfer1::IBuilderConfig* config = builder->createBuilderConfig();

在可用的配置选项中,你可以控制TensorRT降低计算精度的能力,控制内存和运行时执行速度之间的权衡,并限制CUDA®内核的选择。由于构建器的运行可能需要几分钟或更长时间,你也可以控制构建器如何搜索内核,以及缓存搜索结果以用于后续运行。在我们的示例代码中,我们仅配置workspace(workspace 就是 tensorrt 里面算子可用的内存空间 )大小和运行时batch size ,如下:

// 配置运行时batch size参数
builder->setMaxBatchSize(1);
// 配置运行时workspace大小
std::cout << "Workspace Size = " << (1 << 28) / 1024.0f / 1024.0f << "MB" << std::endl; // 256Mib
config->setMaxWorkspaceSize(1 << 28);

2.3 生成Engine

在你有了网络定义和Builder配置后,你可以调用Builder来创建EngineBuilder以一种称为plan的序列化形式创建Engine,它可以立即反序列化,也可以保存到磁盘上供以后使用。需要注意的是,由TensorRT创建的Engine是特定于创建它们的TensorRT版本和创建它们的GPU的,当迁移到别的GPU和TensorRT版本时,不能保证模型能够被正确执行。生成Engine的示例代码如下:

nvinfer1::ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);

2.4 保存为模型文件

当有了engine后我们可以将其保存为文件,以供后续使用。代码如下:

// 序列化
nvinfer1::IHostMemory* engine_data = engine->serialize();
// 保存至文件
std::ofstream engine_file("mlp.engine", std::ios::binary);
engine_file.write((char*)engine_data->data(), engine_data->size());

2.5 释放资源

// 理论上,前面申请的资源都应该在这里释放,但是这里只是为了演示,所以只释放了部分资源
file.close();             // 关闭文件
delete serialized_engine; // 释放序列化的engine
delete engine;            // 释放engine
delete config;            // 释放config
delete network;           // 释放network
delete builder;           // 释放builder

三、运行时阶段

样例代码: 6.trt_basic/src/runtime.cu

TensorRT运行时的最高层级接口是runtime 如下:

nvinfer1::IRuntime *runtime = nvinfer1::createInferRuntime(logger);

当使用runtime时,你通常会执行以下步骤:

  • 反序列化一个计划以创建一个Engine
  • 从引擎中创建一个ExecutionContext

然后,重复进行:

  • 为Inference填充输入缓冲区。
  • ExecutionContext调用enqueueV2()来运行Inference

3.1 反序列化并创建Engine

通过读取模型文件并反序列化,我们可以利用runtime生成Engine。如下:

nvinfer1::ICudaEngine *engine = runtime->deserializeCudaEngine(engine_data.data(), engine_data.size(), nullptr);

Engine接口代表一个优化的模型。你可以查询Engine关于网络的输入和输出张量的信息,如:预期尺寸、数据类型、数据格式等。

3.2 创建一个ExecutionContext

有了Engine后我们需要创建ExecutionContext 以用于后面的推理执行。

nvinfer1::IExecutionContext *context = engine->createExecutionContext();

Engine创建的ExecutionContext接口是调用推理的主要接口。ExecutionContext包含与特定调用相关的所有状态,因此你可以有多个与单个引擎相关的上下文,且并行运行它们,在这里我们暂不展开了解,仅做介绍。

3.3 为推理填充输入

我们首先创建CUDA Stream用于推理的执行。

stream 可以理解为一个任务队列,调用以 async 结尾的 api 时,是把任务加到队列,但执行是异步的,当有多个任务且互相没有依赖时可以创建多个 stream 分别用于不同的任务,任务直接的执行可以被 cuda driver 调度,这样某个任务做 memcpy时 另外一个任务可以执行计算任务,这样可以提高 gpu利用率。

cudaStream_t stream = nullptr;
// 创建CUDA Stream用于context推理
cudaStreamCreate(&stream);

然后我们同时在CPU和GPU上分配输入输出内存,并将输入数据从CPU拷贝到GPU上。

// 输入数据
float* h_in_data = new float[3]{1.4, 3.2, 1.1};
int in_data_size = sizeof(float) * 3;
float* d_in_data = nullptr;
// 输出数据
float* h_out_data = new float[2]{0.0, 0.0};
int out_data_size = sizeof(float) * 2;
float* d_out_data = nullptr;
// 申请GPU上的内存
cudaMalloc(&d_in_data, in_data_size);
cudaMalloc(&d_out_data, out_data_size);
// 拷贝数据
cudaMemcpyAsync(d_in_data, h_in_data, in_data_size, cudaMemcpyHostToDevice, stream);
// enqueueV2中是把输入输出的内存地址放到bindings这个数组中,需要写代码时确定这些输入输出的顺序(这样容易出错,而且不好定位bug,所以新的接口取消了这样的方式,不过目前很多官方 sample 也在用v2)
float* bindings[] = {d_in_data, d_out_data};

3.4 调用enqueueV2来执行推理

将数据从CPU中拷贝到GPU上后,便可以调用enqueueV2 进行推理。代码如下:

// 执行推理
bool success = context->enqueueV2((void**)bindings, stream, nullptr);
// 把数据从GPU拷贝回host
cudaMemcpyAsync(h_out_data, d_out_data, out_data_size, cudaMemcpyDeviceToHost, stream);
// stream同步,等待stream中的操作完成
cudaStreamSynchronize(stream);
// 输出
std::cout << "输出信息: " << host_output_data[0] << " " << host_output_data[1] << std::endl;

3.5 释放资源

cudaStreamDestroy(stream);
cudaFree(device_input_data_address);
cudaFree(device_output_data_address);   
delete[] host_input_data;
delete[] host_output_data;

delete context;
delete engine;
delete runtime;
3.5.1 runtime.cu 的全部代码
/*
使用.cu是希望使用CUDA的编译器NVCC,会自动连接cuda库

TensorRT runtime 推理过程

1. 创建一个runtime对象
2. 反序列化生成engine:runtime ---> engine
3. 创建一个执行上下文ExecutionContext:engine ---> context

    4. 填充数据
    5. 执行推理:context ---> enqueueV2

6. 释放资源:delete

*/
#include <iostream>
#include <vector>
#include <fstream>
#include <cassert>

#include "cuda_runtime.h"
#include "NvInfer.h"

// logger用来管控打印日志级别
// TRTLogger继承自nvinfer1::ILogger
class TRTLogger : public nvinfer1::ILogger
{
    void log(Severity severity, const char *msg) noexcept override
    {
        // 屏蔽INFO级别的日志
        if (severity != Severity::kINFO)
            std::cout << msg << std::endl;
    }
} gLogger;

// 加载模型
std::vector<unsigned char> loadEngineModel(const std::string &fileName)
{
    std::ifstream file(fileName, std::ios::binary);        // 以二进制方式读取
    assert(file.is_open() && "load engine model failed!"); // 断言

    file.seekg(0, std::ios::end); // 定位到文件末尾
    size_t size = file.tellg();   // 获取文件大小

    std::vector<unsigned char> data(size); // 创建一个vector,大小为size
    file.seekg(0, std::ios::beg);          // 定位到文件开头
    file.read((char *)data.data(), size);  // 读取文件内容到data中
    file.close();

    return data;
}

int main()
{
    // ==================== 1. 创建一个runtime对象 ====================
    TRTLogger logger;
    nvinfer1::IRuntime *runtime = nvinfer1::createInferRuntime(logger);

    // ==================== 2. 反序列化生成engine ====================
    // 读取文件
    auto engineModel = loadEngineModel("./model/mlp.engine");
    // 调用runtime的反序列化方法,生成engine,参数分别是:模型数据地址,模型大小,pluginFactory
    nvinfer1::ICudaEngine *engine = runtime->deserializeCudaEngine(engineModel.data(), engineModel.size(), nullptr);

    if (!engine)
    {
        std::cout << "deserialize engine failed!" << std::endl;
        return -1;
    }

    // ==================== 3. 创建一个执行上下文 ====================
    nvinfer1::IExecutionContext *context = engine->createExecutionContext();

    // ==================== 4. 填充数据 ====================

    // 设置stream 流
    cudaStream_t stream = nullptr;
    cudaStreamCreate(&stream);

    // 数据流转:host --> device ---> inference ---> host

    // 输入数据
    float *host_input_data = new float[3]{2, 4, 8}; // host 输入数据
    int input_data_size = 3 * sizeof(float);        // 输入数据大小
    float *device_input_data = nullptr;             // device 输入数据

    // 输出数据
    float *host_output_data = new float[2]{0, 0}; // host 输出数据
    int output_data_size = 2 * sizeof(float);     // 输出数据大小
    float *device_output_data = nullptr;          // device 输出数据

    // 申请device内存
    cudaMalloc((void **)&device_input_data, input_data_size);
    cudaMalloc((void **)&device_output_data, output_data_size);

    // host --> device
    // 参数分别是:目标地址,源地址,数据大小,拷贝方向
    // 使用异步拷贝,提高利用率
    cudaMemcpyAsync(device_input_data, host_input_data, input_data_size, cudaMemcpyHostToDevice, stream);

    // bindings告诉Context输入输出数据的位置
    float *bindings[] = {device_input_data, device_output_data};

    // ==================== 5. 执行推理 ====================
    bool success = context -> enqueueV2((void **) bindings, stream, nullptr);
    // 数据从device --> host
    cudaMemcpyAsync(host_output_data, device_output_data, output_data_size, cudaMemcpyDeviceToHost, stream);
    // 等待流执行完毕
    cudaStreamSynchronize(stream);
    // 输出结果
    std::cout << "输出结果: " << host_output_data[0] << " " << host_output_data[1] << std::endl;

    // ==================== 6. 释放资源 ====================
    cudaStreamDestroy(stream);
    cudaFree(device_input_data); 
    cudaFree(device_output_data);

    delete host_input_data;
    delete host_output_data;

    delete context;
    delete engine;
    delete runtime;
    
    return 0;
}

3.6 CMakeLists.txt和FindTensorRT.cmake

为了能使build.cpp和runtime.cu运行成功,下面提供CMakeLists.txt和FindTensorRT.cmake的代码,如下,

CMakeLists.txt:

# 最低版本要求
cmake_minimum_required(VERSION 3.10)

# 项目信息
project(trt_demo LANGUAGES CXX CUDA)

# 添加CMAKE_MODULE_PATH,否则找不到FindTensorRT.cmake
list (APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake)

# 寻找TensorRT库
find_package(TensorRT REQUIRED)

if (TensorRT_FOUND)
    message(STATUS "Found TensorRT ${TensorRT_VERSION} in ${TensorRT_ROOT_DIR}")
    message(STATUS "TensorRT libraries: ${TensorRT_LIBRARIES}")
    message(STATUS "TensorRT include files: ${TensorRT_INCLUDE_DIRS}")
else()
    message(FATAL_ERROR "Cannot find TensorRT")

endif()

# 添加可执行文件
add_executable(build src/build.cpp)

# 头文件
target_include_directories(build PRIVATE ${TensorRT_INCLUDE_DIRS})
# 链接库
target_link_libraries(build PRIVATE ${TensorRT_LIBRARIES})


# 添加可执行文件
add_executable(runtime src/runtime.cu)

# 头文件
target_include_directories(runtime PRIVATE ${TensorRT_INCLUDE_DIRS})
# 链接库
target_link_libraries(runtime PRIVATE ${TensorRT_LIBRARIES})

FindTensorRT.cmake:

## find tensorrt
include(FindPackageHandleStandardArgs)

## 用户可以输入的TensorRT 搜索路径
set(TensorRT_ROOT
	""
	CACHE
	PATH
	"TensorRT root directory")

## 设置TensorRT 搜索路径
set(TensorRT_SEARCH_PATH
  /usr/include/x86_64-linux-gnu
  /usr/src/tensorrt
  /usr/lib/x86_64-linux-gnu
  ${TensorRT_ROOT}
)

## 设置需要搜索的TensorRT 依赖库
set(TensorRT_ALL_LIBS
  nvinfer
  nvinfer_plugin
  nvparsers
  nvonnxparser
)

## 提前设置后面需要用的变量
set(TensorRT_LIBS_LIST)
set(TensorRT_LIBRARIES)

## 搜索头文件的路径
find_path(
  TensorRT_INCLUDE_DIR
  NAMES NvInfer.h
  PATHS ${TensorRT_SEARCH_PATH}
)

## 利用头文件路径下的version文件来设置TensorRT的版本信息
if(TensorRT_INCLUDE_DIR AND EXISTS "${TensorRT_INCLUDE_DIR}/NvInferVersion.h")
  file(STRINGS "${TensorRT_INCLUDE_DIR}/NvInferVersion.h" TensorRT_MAJOR REGEX "^#define NV_TENSORRT_MAJOR [0-9]+.*$")
  file(STRINGS "${TensorRT_INCLUDE_DIR}/NvInferVersion.h" TensorRT_MINOR REGEX "^#define NV_TENSORRT_MINOR [0-9]+.*$")
  file(STRINGS "${TensorRT_INCLUDE_DIR}/NvInferVersion.h" TensorRT_PATCH REGEX "^#define NV_TENSORRT_PATCH [0-9]+.*$")

  string(REGEX REPLACE "^#define NV_TENSORRT_MAJOR ([0-9]+).*$" "\\1" TensorRT_VERSION_MAJOR "${TensorRT_MAJOR}")
  string(REGEX REPLACE "^#define NV_TENSORRT_MINOR ([0-9]+).*$" "\\1" TensorRT_VERSION_MINOR "${TensorRT_MINOR}")
  string(REGEX REPLACE "^#define NV_TENSORRT_PATCH ([0-9]+).*$" "\\1" TensorRT_VERSION_PATCH "${TensorRT_PATCH}")
  set(TensorRT_VERSION_STRING "${TensorRT_VERSION_MAJOR}.${TensorRT_VERSION_MINOR}.${TensorRT_VERSION_PATCH}")
endif()
message("TensorRT version: ${TensorRT_VERSION_STRING}")

## 搜索sample code的路径
find_path(
  TensorRT_SAMPLE_DIR
  NAMES trtexec/trtexec.cpp
  PATHS ${TensorRT_SEARCH_PATH}
  PATH_SUFFIXES samples
)

## 依次搜索TensorRT依赖库
foreach(lib ${TensorRT_ALL_LIBS} )
  find_library(
    TensorRT_${lib}_LIBRARY
    NAMES ${lib}
    PATHS ${TensorRT_SEARCH_PATH}
  )
  ## 存储TensorRT的依赖库变量
  set(TensorRT_LIBS_VARS TensorRT_${lib}_LIBRARY ${TensorRT_LIBS_LIST})
  ## 也是TensorRT的依赖库,存成list,方便后面用foreach
  list(APPEND TensorRT_LIBS_LIST TensorRT_${lib}_LIBRARY)
endforeach()

## 调用cmake内置功能,设置基础变量如xxx_FOUND
find_package_handle_standard_args(TensorRT REQUIRED_VARS TensorRT_INCLUDE_DIR TensorRT_SAMPLE_DIR ${TensorRT_LIBS_VARS})

if(TensorRT_FOUND)
  ## 设置Tensor_LIBRARIES变量
  foreach(lib ${TensorRT_LIBS_LIST} )
    list(APPEND TensorRT_LIBRARIES ${${lib}})
  endforeach()
  message("Found TensorRT: ${TensorRT_INCLUDE_DIR} ${TensorRT_LIBRARIES} ${TensorRT_SAMPLE_DIR}")
  message("TensorRT version: ${TensorRT_VERSION_STRING}")
endif()

四、编译和运行

样例代码: 6.trt_basic/CMakeLists.txt

利用我们前面cmake课程介绍的添加自定义模块的方法,创建cmake/FindTensorRT.cmake文件,我们运行下面的命令以编译示例代码:

cmake -S . -B build 
cmake --build build

然后执行下面命令,build将生成mlp.engine,而runtime将读取mlp.engine并执行:

./build/build
./build/runtime

最后将看到输出结果:

输出信息: 0.970688 0.999697

备注:这篇博客为修改过后的转载,因为没有转载链接,所以选了原创

  • 8
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值