TensorFlow中 dropout的值的设置?

最近训练OCR网络出现了过拟合,多以对于dropout的值进行了考虑

经过查看相关帖子

https://www.cnblogs.com/2014-august/articles/10874284.html

网上有几种说法,一种是以p的概率保留,一种是以p的概率丢弃。

TensorFlow 实现是以p的概率保留,训练时以p的概率保留,并且以scale缩放剩下的权重,测试时设置为1。

例子。

#调用dropout函数
import tensorflow as tf
a = tf.Variable([1.0,2.0,3.0,4.5])
sess = tf.Session()
init_op = tf.global_variables_initializer()
sess.run(init_op)
a = tf.nn.dropout(a, 1.0)
print(sess.run(a))

1.0全部保留。可以更改值进行测试

 

设置为0.3 以0.3的几率保留适用于过拟合很大的情况,一般设置为0.5

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值