无人驾驶系列——概述

本文介绍了无人驾驶行业,包括其定义、能解决的问题及发展历程与分级。详细阐述了L4自动驾驶系统架构,涵盖硬件如感知、定位传感器、车载计算单元、车辆线控系统,以及软件如操作系统、高精地图、定位、感知、预测、决策、控制等方面,最后进行总结提问。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无人驾驶行业概述

什么是无人驾驶

A self-driving car, also known as an autonomous car, driver-less car, or robotic car (robo-car),is a car incorporating vehicular automation, that is, a ground vehicle that is capable of sensing its environment and moving safely with little or no human input.
能够感知周围的环境,用很少的人的参与来执行驾驶行为。
自动驾驶:某些情况下可以加入人的参与与监督。
无人驾驶:完全不依赖于人的行为,是为更高级的自动驾驶

无人驾驶能解决什么问题
  1. 提升交通效率
  • 无人驾驶汽车严格遵守交通规则
  • 道路通行更顺畅、拥堵减少、交通事故大大降低
  • 隐形路口问题,通行效率提高45%
  • 减少通勤时间
  1. 车辆利用率提升
  • 缓解停车位紧张
  • 无需停车位,点对点交通运输
  • 共享交通方式将最大化普及
  • 费用降低
  1. 交通事故问题
  • 每年全球超过100万人死于车祸
  • 93%的事故是人为造成的:醉驾、疲劳驾驶、分心驾驶
  • 人类需要每次从零开始学习,总有新手司机上路,错误一遍遍重演
  • 无人驾驶能够互联互通,比人更高效

无人驾驶发展历程

无人驾驶分级

自动驾驶分为6个级别
32583119239284
SAE:美国汽车工程师协会
L0:无自动化,全部人工
L1:巡航定速(Adaptive Cruise Control,ACC),巡航装置可以纵向控制车辆,可以加速减速
L2: 车道保持辅助(Lane Keeping)系统可以纵向控制也可以横向控制汽车,但车是辅助,人才是主导
L2.5: 可以提供简单路况下的变道能力;
L2与L3之间有一个鸿沟:权责问题
L3:在L2基础上提供编导能力,在某一时段内车是责任主体
L4: 相当于全无人驾驶,大部分时间由车来做主导
L5: 驾驶能力上几乎与人类没有关系,车辆上没有接管设备

L4级别无人驾驶

实现思路:

  • V2X:Vehicle to Everything(车路协同)
    • V2V(车辆)
    • V2I(公共设施)
    • V2P(行人)
  • 边缘计算
    • RSU(路侧单元)
    • OBU(车载单元)
  • 5G通信能力
    • LTE-V协议:专门针对车间通讯的协议,可兼容4G-5G
  • 路侧智能:强大的感知能力(百度ACE计划)
  • 主车智能:近些年深度学习填补上了最后一块软件难题
  • 感知能力:高度复杂冗余的传感器
  • 决策能力:大数据下的智能决策
  • 高精地图:丰富的地图信息数据
  • 定位:精准的位置获取能力
  • 权责问题如何处理?
    • RSS模型(Responsibility-Sensitive Safety)责任敏感安全模型
    • 为自动驾驶汽车与人类的责任概念提供具体可衡量的参数,并通过对所有记录在案的交通事故所涉及的行为进行分析和统计,为自动驾驶汽车界定了一个可计量的“安全状态”

无人驾驶技术路径

无人驾驶技术概述

L4自动驾驶系统架构

499763119227151

自动驾驶硬件概述

131033419247317
感知传感器
  • 摄像头:广泛用于物体识别和物体追踪场景,比如车道线检测、交通灯识别等,一般无人驾驶车都安装环视多枚摄像头
  • 激光雷达:用于障碍物位置识别、绘制地图、辅助定位等,准确率非常高,很多方案中将激光雷达作为主传感器使用
  • 毫米波雷达:阴雨天、雾霾天能够辅助感知获取物体的位置和速度,观测距离远但误检较多
  • 超声波:近处高敏感度传感器,常用于作为安全冗余设备检测车辆的碰撞安全问题
定位系统传感器
  • IMU:实时测量自身的姿态,200Hz或更高,包含了三个单轴的加速度计和三个单轴的陀螺仪,加速度计检测物体在载体坐标系统独立三轴的加速度信号,而陀螺仪检测载体相对于导航坐标系的角速度信号
  • GNSS:也是大家常听到的GPS,无人车一般使用RTK(载波相位差分技术)技术来进行定位、频率相对较低10Hz左右
车载计算单元(IPC)
131295619239986
  • 高效连接计算单元内部各计算设备,连接外部传感器的信息输入和存储
  • 冗余设计,以防止单点故障
  • 需要考虑整体的车规、电磁干扰和振动方面的设计以及ISO-26262标准的要求
  • ISO-26262:一个硬件达到了ASIL D级别的要求,那么它的故障率是10FIT,即10亿个小时里面出一次故障,汽车行业在安全方面可以做到的极限
车辆线控系统
  • 自动驾驶线控系统:汽车的控制是由一些简单命令完成的,而不是由物理操作完成。这一部分相当于人的手和脚
  • 传统汽车的这些控制由液压系统和真空助力泵协助完成,自动驾驶汽车的线控主要用电控化的零部件来完成,如电子液压制动系统

自动驾驶软件概述

38171620236541 299481820232295
操作系统OS
  • RTOS:实时操作系统
    • QNX:类Unix系统,具有强实时性,符合车规级的实时操作系统
    • RT Linux:Linux内核补丁,通过软实时进行监控
  • FrameWork:
    • ROS(机器人操作系统)
    • YARP、Microsoft Robotics、MOOS、Cybertron
高精地图 HD Map(High Dimensional)
  • 不同于导航地图,最大的特点就是高纬度和高精度
  • 道路网的精确三维表征,如交叉路口布局和路标位置
  • 地图语义信息,如道路的速度限制、左转车道开始的位置
  • 导航地图只能达到米级精度,高精地图需要达到厘米级精度
  • 高精地图坐标系:WGS84、墨卡托坐标系
  • 高精地图提供其它Level4模块的数据支持
  • 提供了很多准确的静态物体的信息
  • 定位可以用于计算相对位置
  • 帮助传感器缩小检测范围,缩小ROI区域
  • 计算道路导航信息
  • 帮助车辆识别车道的确切中心线
定位Localization
  • 无人车最重要的一步就是知道自己在哪
  • INS:Inertial Navigation System惯性导航系统
  • IMU:获取自身状态(加速度和角速度)后通过状态矩阵递推下一时刻位置
  • 但是如果没有校正信息的话,这种状态递推会随着时间不断累计误差,导致最终位置发散
  • RTK:载波相位差分系统(在GPS中加入了一个基站)
    • GNSS
    • RTK多入了一个静止基站,同样收到定位卫星的信号,无人车与RTK相隔不太远的情况下,对二者之间的干扰信号用差分抹平
    • RTK通过较低的更新频率提供相对准确的位置信息,INS则以较高的频率提供和准确性较差的姿态信息。通过使用卡尔曼滤波整合两类数据获取其各自优势,合并提供出高准确性的实时信息
  • 几何定位
    • 激光雷达、摄像头、高精地图
    • 利用激光雷达或者图像信息,可以通过物体匹配来对汽车进行定位。将检测的数据与预先存在的高精地图之间匹配,通过这种比较可获知汽车在高精地图上的全球位置和行驶方向
    • 迭代最近点(ICP)、直方图滤波(Histogram Filter)
感知 Perception
398003321250175
  • 四大基础任务:
    • 找出物体在环境中的位置
    • 明确对象是什么,比如人、红绿灯等
    • 随时间的持续观察移动物体并保持一致
    • 图像中的每个像素与语义类别进行匹配,如道路、汽车、天空,边界清晰
  • 方式方法
    • 图像、点云、雷达反射值数据:
    • 监督学习、半监督学习、强化学习
    • R-CNN、YOLO、SSD
    • 计算融合问题:
      • 前融合、后融合
预测 Prediction
  • 实时性和准确性
  • 基于状态进行预测
    • 卡尔曼滤波
    • Particle滤波
  • 基于车道序列进行预测
    • 通过机器学习模型化简为分类问题
  • 行人预测:无人车需要非常重视安全问题,其中人的安全最为重要,而行人的意图变化却是最难预测的也是约束最少的,另外对于不同的障碍物也要有不同的理解,比如人和狗
决策 Planning
  • 导航线路规划和精细轨迹表述
  • 数学问题转换:将物理世界的地图转换为数学上的图表达
  • 最优路径搜索:由于其他软件模块已经将不确定性进行了最大程度的消除,而最终决策规划模块又是对稳定性要求极高的模块,因此可以通过数学上的最优路径求解出确定解,遍历最优解是非常耗时的。
  • 需要考虑车辆的体感和安全性
    301935921247779
控制 Control
  • 输入信息:目标轨迹、车辆状态;输出:方向盘、油门
    • 实现对无人车的控制,我们需要知道踩刹车和减速的关系、踩油门和加速的关系等,当无人车拿到一些控制学参数后,通过电脑对无人车进行控制
    • 控制是对整个驾驶最后的保障,因此需要在任何情况下对准确性、稳定性和时效性要求都非常高,需要通过对车辆模型精细化描述进行严格的数学表达
    • 传统的控制算法PID可以满足车辆控制要求,但是考虑到体感和一些极限情况,控制算法优化也是目前无人车的一个持续探讨的问题,如LQR、MPC等

总结

我在哪

560650622245281

我周围有什么

324370722248962

他们到哪儿去

324370722248962

我该怎么走

525040722244098
### LabVIEW在无人驾驶领域中的应用与实现 #### 功能概述 LabVIEW作为一种图形化的编程环境,在数据采集、分析以及控制系统设计方面表现出色。它能够通过模块化的方式快速构建复杂的自动化系统,适用于多种工业场景,包括无人驾驶技术的研发和部署[^1]。 #### 图像处理能力 NIVision作为LabVIEW的重要组成部分,提供了丰富的图像处理函数库,支持目标检测、特征提取等操作。这些功能对于无人驾驶车辆的感知层至关重要,例如识别道路标志、行人和其他障碍物。利用NIVision可以高效完成摄像头输入的数据预处理工作,并将其转化为可供决策使用的结构化信息。 #### 3D视觉技术支持 随着自动驾驶需求向更高维度发展,仅依靠二维平面已无法满足复杂路况下的精确建模要求。为此,LabVIEW推出了专门针对三维空间计算优化过的插件——3D Vision Development Toolkit。该工具包不仅允许开发者轻松创建基于点云的人机交互界面,还具备将传统CAD模型转换成真实世界坐标系下可操控实体的能力][^[^23]。这种特性使得无人车能够在虚拟环境中模拟行驶过程并验证算法效果成为可能;同时也能帮助工程师更直观地理解传感器反馈回来的大规模立体几何形态。 #### 实现方法举例 以下是使用LabVIEW开发的一个典型无人驾驶项目框架: ```python import labview_api as lv def initialize_system(): """初始化硬件连接""" camera = lv.connect_camera() lidar = lv.connect_lidar() return {"camera": camera, "lidar": lidar} def process_data(devices): """获取并处理来自设备的数据流""" image_frame = devices["camera"].capture_image() point_cloud = devices["lidar"].scan_environment() processed_image = nivision.apply_filters(image_frame) # 应用滤波器增强对比度 detected_objects = nivision.identify_objects(processed_image)# 执行对象分类 filtered_points = filter_pointcloud(point_cloud) # 去除噪声后的点集 segmented_regions = segment_road(filtered_points) # 提取车道区域 combined_info = merge_vision_results(detected_objects, segmented_regions) return combined_info def plan_trajectory(perception_output): """根据当前状态制定下一步行动方案""" trajectory = compute_optimal_path(perception_output['objects'], perception_output['lane']) control_signals = generate_control_commands(trajectory) send_to_actuators(control_signals) if __name__ == "__main__": system_devices = initialize_system() while True: sensor_readings = process_data(system_devices) plan_trajectory(sensor_readings) ``` 上述伪代码展示了如何综合运用不同类型的传感装置来获得全面的道路状况描述,并据此做出合理的驾驶指令调整建议^。 #### 结论 综上所述,借助于强大灵活的功能组合,LabVIEW非常适合用来探索解决实际问题为导向的研究型课题比如无人驾驶汽车的设计流程当中去实践创新想法和技术突破方向。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UPTOLIMIT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值