生成式人工智能融入高中语文教学的实践与展望

生成式人工智能融入高中语文教学的实践与展望

一、引言

1.1 研究背景与意义

随着信息技术的飞速发展,生成式人工智能作为人工智能领域的重要分支,正以前所未有的速度融入社会生活的各个方面。生成式人工智能是一种以机器学习与深度学习技术为支撑的人工智能模型,能够模拟人类的创造性思维,根据特定指令生成具有一定逻辑性和连贯性的语言文本、图像、音频等内容 。从 2023 年 OpenAI 公司发布强大的大模型 GPT-4,到百度旗下预训练生成式大语言模型产品文心一言面向公众发布,再到科大讯飞公司推出讯飞星火认知大模型,2023 年 8 月,首批 11 家国产大语言模型通过国家监管部门备案陆续进入大众视野,生成式人工智能产品的开发与应用已经得到高度关注,其发展之迅猛令人瞩目。

在教育领域,生成式人工智能同样展现出巨大的应用潜力。它为教育变革注入新的活力,正逐渐改变着传统的教学模式与学习方式。高中语文作为基础教育的重要学科,承担着培养学生语言文字运用能力、思维能力、审美能力和文化传承意识的重任。然而,传统的高中语文教学在教学内容、教学方式和教学资源等方面面临着诸多挑战,如教学内容局限于教材,难以满足学生日益增长的多元化需求;教学方式以教师讲授为主,学生的主动性和创造性难以得到充分发挥;教学资源相对匮乏,且分布不均衡,影响教学质量的提升。

将生成式人工智能引入高中语文教学,为解决这些问题提供了新的思路和方法。它能够为教师提供丰富的教学资源和多样化的教学工具,助力教师创新教学方法,提高教学效率;也能为学生营造更加生动、有趣的学习情境,激发学生的学习兴趣,满足学生的个性化学习需求,提升学生的语文综合素养。深入研究生成式人工智能与高中语文教学的融合,具有重要的现实意义。

本研究旨在深入探讨生成式人工智能在高中语文教学中的应用,分析其优势与挑战,提出切实可行的应用策略,为高中语文教学的创新与发展提供理论支持和实践指导。通过本研究,期望能够丰富语文教育理论与人工智能技术应用的交叉研究,为教育信息化提供新的理论视角;同时,指导教师在教学中更好地应用生成式人工智能技术,提高教学效率和质量,促进教育公平,推动高中语文教育现代化进程,为培养具有创新能力和实践能力的高素质人才贡献力量。

1.2 国内外研究现状

近年来,生成式人工智能在教育领域的应用研究成为热点,国内外学者从不同角度对其在高中语文教学中的应用展开研究,取得了一定成果,但也存在一些不足。

国外研究起步相对较早,在理论探索和实践应用方面都有一定的积累。在理论研究上,学者们从教育心理学、认知科学等多学科视角出发,探讨生成式人工智能应用于语文教学的理论基础和潜在影响。如有研究从建构主义学习理论出发,认为生成式人工智能能为学生提供个性化学习环境,促进学生主动建构知识 。在实践应用方面,国外部分学校已经开展相关教学实验,利用生成式人工智能工具辅助语文写作教学,通过智能批改、范文生成等功能,提升学生写作能力。例如,一些学校采用智能写作平台,学生完成作文后,平台能快速给出语法、逻辑、内容等方面的批改建议,并提供相关写作思路和范例,帮助学生改进写作。

国内关于生成式人工智能在高中语文教学中的研究近年来发展迅速。在理论研究方面,学者们结合我国语文教育的特点和需求,探讨生成式人工智能的应用价值和发展路径。有研究指出,生成式人工智能有助于打破传统语文教学的局限,丰富教学内容和形式,培养学生的创新思维和语言运用能力。在实践研究方面,不少一线教师积极开展教学实践,探索生成式人工智能在语文教学各环节的应用,如利用智能工具辅助备课,获取丰富的教学资源和教学设计思路;在课堂教学中,通过生成式人工智能创设情境,激发学生学习兴趣;在作业批改和评价环节,借助智能批改系统提高批改效率和评价的客观性。

然而,目前国内外的研究仍存在一些不足之处。一方面,研究的系统性和深入性有待加强。多数研究仅停留在对生成式人工智能在高中语文教学中某一应用点的探讨,缺乏从教学目标、教学内容、教学方法、教学评价等全流程的系统研究,难以形成完整的应用体系和理论框架。另一方面,实证研究相对较少。许多研究只是基于理论分析或教学经验提出观点和建议,缺乏严谨的实证研究来验证生成式人工智能在高中语文教学中的实际效果和影响因素,导致研究成果的可信度和推广性受到一定限制。此外,对于生成式人工智能应用带来的伦理、安全等问题,虽然已有部分研究关注,但在应对策略和解决方案上还不够完善,需要进一步深入探讨 。

1.3 研究方法与创新点

本研究综合运用多种研究方法,力求全面、深入地探讨生成式人工智能与高中语文教学的融合。

文献研究法是本研究的重要基础。通过广泛查阅国内外关于生成式人工智能、高中语文教学以及二者融合的相关文献,包括学术期刊论文、学位论文、研究报告、政策文件等,梳理研究现状,把握研究趋势,为研究提供坚实的理论支撑。对生成式人工智能在教育领域应用的相关理论进行系统分析,了解其发展历程、技术原理和应用模式,明确其在高中语文教学中的潜在价值和应用方向。同时,分析高中语文教学的目标、内容、方法和评价体系,找出传统教学中存在的问题和不足,为后续研究提供切入点。

案例分析法为研究提供了实践依据。选取多所高中的语文教学实践案例,包括课堂教学、课后辅导、作业批改等环节,深入分析生成式人工智能在实际教学中的应用情况。在某高中的写作教学中,教师利用生成式人工智能工具为学生提供写作思路和范文参考,通过分析该案例中工具的使用效果、学生的反馈以及教师的教学体验,总结成功经验和存在的问题。对不同类型的生成式人工智能产品在高中语文教学中的应用进行对比分析,如不同大语言模型在辅助备课、课堂互动、个性化学习等方面的优势和局限性,为教师选择合适的工具提供参考。

调查研究法使研究更具针对性和现实意义。通过问卷调查的方式,了解高中语文教师和学生对生成式人工智能的认知、态度和使用情况。设计涵盖教师对生成式人工智能的了解程度、应用频率、应用场景、遇到的问题以及对教学效果影响等方面的问卷,发放给一定数量的高中语文教师;针对学生设计关于对生成式人工智能的兴趣、使用体验、对学习成绩和学习兴趣的影响等问题的问卷。通过访谈的形式,与部分教师和学生进行深入交流,进一步了解他们在使用生成式人工智能过程中的感受、困惑和期望。与在教学中积极应用生成式人工智能的教师进行访谈,了解他们在教学创新、教学资源整合等方面的经验和想法;与学生交流,了解他们对生成式人工智能辅助学习的真实感受和需求 。

本研究的创新点主要体现在以下几个方面。一是研究视角的创新,从高中语文教学的全流程出发,系统研究生成式人工智能在教学目标制定、教学内容设计、教学方法选择、教学评价实施等环节的应用,突破了以往研究仅关注某一应用点的局限,构建了较为完整的应用体系和理论框架。二是研究方法的创新,综合运用文献研究法、案例分析法和调查研究法,将理论研究与实践研究相结合,定性分析与定量分析相结合,通过多维度的研究方法全面深入地探讨生成式人工智能与高中语文教学的融合,使研究结果更具可信度和推广性。三是在研究内容上,不仅关注生成式人工智能在高中语文教学中的应用优势,还深入分析其带来的伦理、安全等问题,并提出切实可行的应对策略,为生成式人工智能在高中语文教学中的健康发展提供全面的指导 。

二、生成式人工智能概述

2.1 概念与原理

生成式人工智能,作为人工智能领域的前沿技术,是一种能够依据给定的提示、数据或指令,生成全新内容的人工智能系统。其生成的内容涵盖文本、图像、音频、视频等多种形式,且具有一定的创造性和逻辑性。与传统人工智能侧重于对已有数据的分析、分类和预测不同,生成式人工智能更注重创造和生成新的信息,这使其在众多领域展现出独特的应用价值和发展潜力 。

生成式人工智能的核心原理建立在机器学习与深度学习技术的基础之上。机器学习是一门多领域交叉学科,它旨在让计算机通过数据学习模式和规律,从而实现对未知数据的预测和决策。在生成式人工智能中,机器学习算法通过对大量数据的学习,构建起数据的内在模式和特征表示,为生成新内容提供基础。例如,在文本生成任务中,机器学习算法学习大量文本的词汇、语法和语义结构,从而能够根据输入的提示生成符合语言规范和语义逻辑的文本 。

深度学习作为机器学习的一个分支,通过构建具有多个层次的神经网络模型,自动从大量数据中学习复杂的特征和模式。在生成式人工智能中,深度学习模型发挥着关键作用。以生成对抗网络(GANs)为例,它由生成器和判别器两个部分组成。生成器负责根据输入的随机噪声生成新的数据,判别器则用于判断生成的数据是真实数据还是生成器生成的假数据。在训练过程中,生成器和判别器相互对抗、不断优化,使得生成器生成的数据越来越逼真,判别器也越来越难以区分真实数据和生成数据。这种对抗学习的机制使得生成式对抗网络能够生成高质量的图像、视频等内容 。

变分自动编码器(VAE)也是一种常用于生成式人工智能的深度学习模型。它将输入数据编码为低维的隐变量表示,然后通过解码过程从隐变量中生成新的数据。变分自动编码器利用变分推断的方法,在保证生成数据与原始数据分布相似的前提下,实现对数据的压缩和生成。与生成对抗网络不同,变分自动编码器生成的数据更具连续性和可解释性,适用于需要生成具有一定语义和逻辑连贯性数据的任务,如文本生成和图像生成等 。

在自然语言处理领域,基于 Transformer 架构的大型语言模型(LLMs)成为生成式人工智能的重要代表。Transformer 架构采用多头注意力机制,能够有效捕捉文本中的长距离依赖关系,从而对文本进行更深入、更全面的理解和处理。大型语言模型在大规模文本数据上进行预训练,学习到丰富的语言知识和语义表示,能够根据输入的提示生成连贯、自然的文本。例如,OpenAI 的 GPT 系列模型、百度的文心一言、科大讯飞的讯飞星火认知大模型等,它们在语言生成、对话交互、知识问答等任务中表现出卓越的能力,为生成式人工智能在自然语言处理领域的应用提供了强大的技术支持 。

2.2 技术特点与优势

生成式人工智能以其独特的技术特点,在高中语文教学中展现出诸多显著优势,为教学带来了新的活力与变革。

高认知性是生成式人工智能的重要特点之一。基于 Transformer 架构的大型语言模型,通过对海量文本数据的深度学习,能够理解和处理自然语言中的复杂语义和语境信息。这些模型具备强大的知识储备和语言理解能力,能够回答各类复杂问题,对文学作品进行深入的分析和解读。在分析鲁迅的《祝福》时,生成式人工智能可以详细阐述小说的时代背景、人物形象、主题思想以及艺术特色,为学生提供全面而深入的理解视角,帮助学生突破认知局限,提升对文学作品的理解层次 。

生成式人工智能还具有高创造性,能够模拟人类的创造性思维,生成新颖、独特的内容。在文本生成任务中,它可以根据给定的主题、风格或情境,创作出富有想象力的故事、诗歌、散文等文学作品。在写作教学中,教师可以利用生成式人工智能激发学生的创作灵感,让学生参考人工智能生成的作品,学习不同的创作手法和表达方式,从而拓宽学生的创作思路,培养学生的创新思维和文学创作能力 。

快速生成内容也是生成式人工智能的一大突出优势。在教学过程中,教师常常需要花费大量时间准备教学资料,而生成式人工智能能够在短时间内根据教师的需求生成丰富多样的教学素材,如教学设计、教学案例、练习题等。在准备古诗词教学时,生成式人工智能可以迅速生成诗词的注释、翻译、赏析,以及相关的文化背景知识和拓展阅读材料,大大提高了教师的备课效率,使教师能够将更多的时间和精力投入到教学方法的设计和学生的指导上 。

个性化交互是生成式人工智能在教育领域的重要应用方向。它能够根据学生的学习情况、兴趣爱好和认知水平,提供个性化的学习支持和指导。通过与学生的实时交互,生成式人工智能可以了解学生的学习需求和困惑,为学生提供针对性的学习建议和解答。在阅读理解训练中,生成式人工智能可以根据学生的答题情况,分析学生的薄弱环节,提供个性化的阅读材料和练习题目,并给予详细的解析和反馈,帮助学生有针对性地提高阅读理解能力 。此外,生成式人工智能还可以作为智能学习伙伴,与学生进行互动交流,激发学生的学习兴趣和积极性,营造更加轻松、愉悦的学习氛围 。

2.3 主要工具与应用场景

目前,生成式人工智能领域涌现出众多功能强大的工具,其中 ChatGPT 和文心一言在高中语文教学中具有广泛的应用场景,为教学活动带来了诸多便利和创新。

ChatGPT 是 OpenAI 研发的聊天机器人程序 ,基于 Transformer 架构的大型语言模型开发而成。它能够理解自然语言,并根据输入的提示生成连贯、自然的文本回复。在高中语文备课过程中,教师可以向 ChatGPT 询问关于课文的详细解析、教学方法建议、拓展阅读资料等。在准备《荷塘月色》的教学时,教师输入 “提供《荷塘月色》的写作背景、作者情感分析以及适合高中生的拓展阅读材料”,ChatGPT 能够迅速整合相关信息,给出全面而详细的回复ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

燕鹏01

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值