Large-Margin Softmax Loss

L-Softmax Loss是一种增强深度学习模型类内紧凑性和类间间隔的方法,通过引入更大的分类间隔来提高分类准确性。它修改了原始Softmax Loss,确保在二分类问题中,正确类别的特征与决策边界的夹角大于其他类。L-Softmax Loss的几何解释显示了其增加的分类边界,从而改善特征分布的紧凑性和类别间隔。实验表明,随着m值的增加,不同类别的特征角间隔增大,类内特征更加紧凑。
摘要由CSDN通过智能技术生成

Large-Margin Softmax Loss

前言

前言
Large-Margin Softmax Loss也是为了提高类内特征的紧凑性,拉大类间特征的间隔(intra-class compactness and inter-class separability)而提出来的。

Large-Margin Softmax Loss1

该论文提出了一个增大类间特征间隔的softmax loss。

定义深度网络模型提取出来的特征为 x i \mathbf{x}_i xi,softmax损失函数为
L = 1 N ∑ i L i = 1 N ∑ i − log ⁡ ( e w y i T x i ∑ j e w j T x i ) L = \frac{1}{N} \sum_{i} L_i = \frac{1}{N} \sum_i - \log \left (\frac{e^{\mathbf{w}_{y_i}^T \mathbf{x}_i}}{\sum_{j} e^{\mathbf{w}_{j}^T \mathbf{x}_i}} \right) L=N1iLi=N1ilog(jewjTxiewyiTxi)
这里忽略偏置b。样本i的类别j的分数由 w j T x i \mathbf{w}_j^T \mathbf{x}_i wjTxi决定,这是一个内乘操作,所以可以说类别j的分数由向量 w j \mathbf{w_j} wj x i \mathbf{x}_i xi的相似度决定,二者的相似度越大,分数越高,样本i越有可能属于类别j。内乘操作可以写成向量模和夹角余弦的乘积形式,如下:
w j T x i = ∥ w j ∥ ∥ x i ∥ cos ⁡ ( θ j ) \mathbf{w}_j^T \mathbf{x}_i = \lVert \mathbf{w}_j \rVert \lVert \mathbf{x}_i \rVert \cos(\theta_j) wjTxi=wjxicos(θj)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值