Large-Margin Softmax Loss
前言
前言
Large-Margin Softmax Loss也是为了提高类内特征的紧凑性,拉大类间特征的间隔(intra-class compactness and inter-class separability)而提出来的。
Large-Margin Softmax Loss1
该论文提出了一个增大类间特征间隔的softmax loss。
定义深度网络模型提取出来的特征为 x i \mathbf{x}_i xi,softmax损失函数为
L = 1 N ∑ i L i = 1 N ∑ i − log ( e w y i T x i ∑ j e w j T x i ) L = \frac{1}{N} \sum_{i} L_i = \frac{1}{N} \sum_i - \log \left (\frac{e^{\mathbf{w}_{y_i}^T \mathbf{x}_i}}{\sum_{j} e^{\mathbf{w}_{j}^T \mathbf{x}_i}} \right) L=N1i∑Li=N1i∑−log(∑jewjTxiewyiTxi)
这里忽略偏置b。样本i的类别j的分数由 w j T x i \mathbf{w}_j^T \mathbf{x}_i wjTxi决定,这是一个内乘操作,所以可以说类别j的分数由向量 w j \mathbf{w_j} wj和 x i \mathbf{x}_i xi的相似度决定,二者的相似度越大,分数越高,样本i越有可能属于类别j。内乘操作可以写成向量模和夹角余弦的乘积形式,如下:
w j T x i = ∥ w j ∥ ∥ x i ∥ cos ( θ j ) \mathbf{w}_j^T \mathbf{x}_i = \lVert \mathbf{w}_j \rVert \lVert \mathbf{x}_i \rVert \cos(\theta_j) wjTxi=∥wj∥∥xi∥cos(θj)