传热学P91第二章题目2-89,长方形截面的直肋片,试分析在一定金属耗量下,为使肋片的散热量最大,肋片的H,δ与λ、h之间应满足怎样的关系?

记录一下自己的推导过程,但不知道结果是否正确

同理,对于圆截面的直肋,则有如下计算:

题目:

 解答:

        首先有\phi =\lambda A_{c}m\theta _{0}th(mH),A_{c}=\frac{\pi d^{2}}{4}m=\sqrt{\frac{hP}{\lambda A_{c}}}P是圆截面的周长,因此有m=\sqrt{\frac{h\pi d}{\lambda \frac{\pi d^{2}}{4}}}=\sqrt{\frac{4h}{\lambda d}},然后因为单圆柱的体积为V=\frac{\pi }{4}d^{2}H,设有n个圆柱体,因此体积V_{all}=n\frac{\pi }{4}\cdot d^{2}H\propto d^{2}H,也就是说,总体积正比于d^{2}H,利用这个性质,取V_{f}=d^{2}H,因此有H=\frac{V_{f}}{d^{2}},将以上式子代入\phi =\lambda A_{c}m\theta _{0}th(mH),得到\phi =\lambda \frac{\pi d^{2}}{4}\sqrt{\frac{4h}{\lambda d}}\theta _{0}th(\sqrt{\frac{4h}{\lambda d}}\cdot \frac{V_{f}}{d^{2}}),整理后有:\phi =\frac{\pi \theta _{0}}{2}\cdot (\lambda hd^{3})^{\frac{1}{2}}\cdot th[2V_{f}\cdot (\frac{h}{\lambda d^{5}})^{\frac{1}{2}}],根据题意,V_{f}\lambdah均为常数,过余温度\theta _{0}也是常数,因此为使圆截面直肋的直径d达到最佳,应该求\phid的倒数,并让导数\frac{d\phi}{dd}=0

\frac{d\phi}{dd}=d(AB)/dd,其中A=\frac{\pi \theta _{0}}{2}\cdot (\lambda hd^{3})^{\frac{1}{2}}B=th[2V_{f}\cdot (\frac{h}{\lambda d^{5}})^{\frac{1}{2}}],根据复合函数求导定义有,\frac{d\phi}{dd}=B\frac{dA}{dd}+A\frac{dB}{dd}=\frac{\pi \theta _{0}}{2}\cdot (\lambda h)^{\frac{1}{2}}\cdot \frac{3}{2}d^{\frac{1}{2}}\cdot th[2V_{f}\cdot (\frac{h}{\lambda d^{5}})^{\frac{1}{2}}]+\frac{\pi \theta _{0}}{2}\cdot (\lambda hd^{3})^{\frac{1}{2}}\cdot (2V_{f}(\frac{h}{\lambda })^{\frac{1}{2}}\cdot -\frac{5}{2}d^{\frac{-7}{2}}sech^{2}[2V_{f}\cdot (\frac{h}{\lambda d^{5}})^{\frac{1}{2}}]),令\beta = 2V_{f}\cdot (\frac{h}{\lambda d^{5}})^{\frac{1}{2}},进一步化简有:\frac{d\phi}{dd}=\frac{\pi \theta _{0}}{2}\cdot (\lambda h)^{\frac{1}{2}}\cdot \frac{3}{2}d^{\frac{1}{2}}\cdot th[\beta]-\frac{\pi \theta _{0}}{2}\cdot (hd^{-2})\cdot 5V_{f}sech^{2}[\beta],提取公因子\frac{\pi \theta _{0}}{2}\cdot (\lambda h)^{\frac{1}{2}}有:

\frac{d\phi}{dd}=\frac{\pi \theta _{0}}{2}\cdot (\lambda h)^{\frac{1}{2}}\cdot (\frac{3}{2}d^{\frac{1}{2}}\cdot th[\beta]-(\frac{h}{\lambda d^{4}})^{\frac{1}{2}}\cdot 5V_{f}\cdot sech^{2}[\beta])=0,移项后得到:

\frac{3}{2}d^{\frac{1}{2}}\cdot th[\beta]=(\frac{h}{\lambda d^{4}})^{\frac{1}{2}}\cdot 5V_{f}\cdot sech^{2}[\beta]\Rightarrow th(\beta)=\frac{10}{3}V_{f}(\frac{h}{\lambda d^{5}})^{\frac{1}{2}}sech^{2}{(\beta)}=\frac{5}{3}\beta sech^{2}{(\beta)},用WolframAlpha网站,解上述方程,得到取正值的\beta = 0.919296。将该\betaV_{f}=d^{2}H代入式子\beta = 2V_{f}\cdot (\frac{h}{\lambda d^{5}})^{\frac{1}{2}},得到最佳直径为d=\frac{4}{\beta^{2}}\cdot \frac{hH^{2}}{\lambda}\approx 4.733(\frac{hH^{2}}{\lambda})。当然,可以不展开V_{f},这样就得到d=\sqrt[5]{\frac{4}{\beta^{2}}\cdot \frac{hV_{f}^{2}}{\lambda}}\approx \sqrt[5]{4.733(\frac{hV_{f}^{2}}{\lambda})},当知道总金属消耗量V_{all},确定圆截面直肋数量n,从而知道V_{f}=\frac{V_{all}}{\frac{\pi}{4}\cdot n},代入上式子,得到最佳直径d,再算出高度H

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用Matlab求解肋片一维导热问题的步骤: 1. 定义问题:肋片一维导热问题是指在一个具有肋片结构的杆件中,通过计算得到杆件内部温度分布的问题。 2. 建立模型:根据肋片一维导热问题的特点,可以建立如下的模型: - 假设肋片杆件为一维结构,其长度为L,截面积为A,导热系数为k; - 假设肋片杆件内部的温度分布为T(x),其中x为杆件上的位置坐标; - 假设肋片杆件的两端分别为温度为T1和T2的热源。 3. 建立方程:根据热传导定律,可以得到如下的肋片一维导热方程: d^2T/dx^2 + Q/kA = 0 其中,Q为单位长度内的热源强度,即Q = (T2-T1)/L。 4. 边界条件:根据肋片杆件的边界条件,可以得到如下的边界条件: T(0) = T1 T(L) = T2 5. 求解方程:使用Matlab的ode45函数可以求解肋片一维导热方程的数值解。具体步骤如下: - 定义方程和边界条件; - 定义求解区间和初值; - 调用ode45函数求解方程; - 绘制温度分布曲线。 下面是一个Matlab求解肋片一维导热问题的示例代码: ```matlab % 定义方程和边界条件 Q = 100; % 热源强度 k = 50; % 导热系数 A = 0.01; % 截面积 T1 = 100; % 杆件左端温度 T2 = 200; % 杆件右端温度 f = @(x,T) [T(2); -Q/k/A]; % 定义方程 bc = @(Ta,Tb) [Ta(1)-T1; Tb(1)-T2]; % 定义边界条件 % 定义求解区间和初值 L = 1; % 杆件长度 xspan = [0 L]; % 求解区间 T0 = [T1 0]; % 初值 % 调用ode45函数求解方程 [x,T] = ode45(f, xspan, T0, odeset('Events', bc)); % 绘制温度分布曲线 plot(x, T(:,1)); xlabel('Position (m)'); ylabel('Temperature (℃)'); title('Temperature Distribution of a Finned Rod'); ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值