【小白冲冲冲!!!】补1: 说一下最大化后验概率

在解释Dog-Leg算法之前, 需要了解与SLAM相关的几个重要的概念, 先验(prior), 后验(posterior),似然(Likehood);

这三个概念所对应的公式分别如下, 一直x是结果(如买东西), \theta是原因(双十一来了,或者钱有点多), 即导致x发生的原因, 则

先验:                   P(\theta )           就是原因发生的概率 

似然:                  P(x|\theta )        也就是在某个原因发生时,导致特定结果的概率, 如对于我来讲,双十一发生的情况下, 我买东西的概率就是百分之百

后验:                 P(\theta |x)           也就是已知结果的情况下,求某个原因发生的概率, 如已知我今天剁手了,那是因为双十一的概率有多大呢?

后验概率可以粗略地说是一种“马后炮”或者“事后诸葛亮”, 就是结果都已经看到了, 再根据结果推测某个原因发生的概率;

这三个概念在一起组成了最常见到的贝叶斯法则:

贝叶斯法则:                             P(\theta |x) \propto P(x|\theta) *P(x)

接下来还是要和SLAM相结合在一起, 在SLAM中原因一般对应为前一时刻相机的位姿, 结果一般对应为当前时刻相机的观测数据;

假设状态变量为x,其中不仅包含了位姿,还有路标点,统称为状态, 对机器人状态的估计, 就是已知输入数据u 和观测数据z的条件下, 求计算状态x的条件概率分布

                                                                                                                        \mathbf{\mathit{\mathit{}}P(x|z,u)},

为了估计状态变量的概率分布,我们需要借助于上面的贝叶斯法则, 也就是:  P(x|z) = \frac{P(z|x) *P(x)}{P(z))} \propto P(z|x) *P(x)

一般,已知一个相机的观测结果去推测当前相机的位姿是有些难度的, 也就是后验分布的估计是比较难的, 但是我们可以去估计后验分布的最大值,即求一个状态x,使得后验概率的值最大, 这也就是最常见到的MAP,最大化后验概率(Maximaz a Posterior)

最大化后验概率的公式:                        x^{*} _{MAP} = argmax(P(\theta |x))  即求一个状态量x, 使得在这个状态下得到结果\theta的概率最大

根据贝叶斯法则, 求最大后验也就相当于求最大似然与先验的乘积, 如果不知道相机的位姿,也就是可以说是直接求最大似然估计, 因此最大化后验概率的公式也就转换成了最大似然估计:

因为x表示状态变量, z表示观测结果, 因此最大似然P(z|x) 可以理解为在当前状态下x下,得到观测结果z的概率, 或者也可解释为:在什么样的状态下,最可能产生现在观测到的数据;

这种情况成为最大似然估计(Maximize Likehood Estimation, MLE):

最大似然估计:                                      x^{*} _{MLE} = argmax(P(x|\theta ))

到此, 也就理解了最大似然在SLAM中意义;

如有疑问,欢迎交流: wx: baobaohaha_ 欢迎对SLAM有兴趣的小伙伴一起交流学习~~

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值