在解释Dog-Leg算法之前, 需要了解与SLAM相关的几个重要的概念, 先验(prior), 后验(posterior),似然(Likehood);
这三个概念所对应的公式分别如下, 一直x是结果(如买东西),
是原因(双十一来了,或者钱有点多), 即导致x发生的原因, 则
先验:
就是原因发生的概率
似然:
也就是在某个原因发生时,导致特定结果的概率, 如对于我来讲,双十一发生的情况下, 我买东西的概率就是百分之百
后验:
也就是已知结果的情况下,求某个原因发生的概率, 如已知我今天剁手了,那是因为双十一的概率有多大呢?
后验概率可以粗略地说是一种“马后炮”或者“事后诸葛亮”, 就是结果都已经看到了, 再根据结果推测某个原因发生的概率;
这三个概念在一起组成了最常见到的贝叶斯法则:
贝叶斯法则:
接下来还是要和SLAM相结合在一起, 在SLAM中原因一般对应为前一时刻相机的位姿, 结果一般对应为当前时刻相机的观测数据;
假设状态变量为x,其中不仅包含了位姿,还有路标点,统称为状态, 对机器人状态的估计, 就是已知输入数据u 和观测数据z的条件下, 求计算状态x的条件概率分布:
,
为了估计状态变量的概率分布,我们需要借助于上面的贝叶斯法则, 也就是:
一般,已知一个相机的观测结果去推测当前相机的位姿是有些难度的, 也就是后验分布的估计是比较难的, 但是我们可以去估计后验分布的最大值,即求一个状态x,使得后验概率的值最大, 这也就是最常见到的MAP,最大化后验概率(Maximaz a Posterior)
最大化后验概率的公式:
即求一个状态量x, 使得在这个状态下得到结果
的概率最大
根据贝叶斯法则, 求最大后验也就相当于求最大似然与先验的乘积, 如果不知道相机的位姿,也就是可以说是直接求最大似然估计, 因此最大化后验概率的公式也就转换成了最大似然估计:
因为x表示状态变量, z表示观测结果, 因此最大似然P(z|x) 可以理解为在当前状态下x下,得到观测结果z的概率, 或者也可解释为:在什么样的状态下,最可能产生现在观测到的数据;
这种情况成为最大似然估计(Maximize Likehood Estimation, MLE):
最大似然估计:
到此, 也就理解了最大似然在SLAM中意义;
如有疑问,欢迎交流: wx: baobaohaha_ 欢迎对SLAM有兴趣的小伙伴一起交流学习~~