#每天一篇论文 257/356 Single Network Panoptic Segmentation for Street Scene Understanding

单网络全景分割用于街道场景理解

摘要

在这项工作中,我们提出了一个单一的深层神经网络用于全景分割,其目标是在语义分割中为输入图像的每个像素提供一个类标签,并在实例分割后为图像中的特定对象提供唯一的标识符。我们的网络进行联合语义和实例分割预测,并将这些预测结合起来,形成全景格式的输出。这主要有两个好处:第一,整个全景预测一次完成,减少了所需的计算时间和资源;第二,通过共同学习任务,两个任务之间共享信息,从而提高性能。我们的网络通过两个街道场景数据集进行评估:城市景观和地图景观通过利用信息交换和改进合并启发式算法,我们提高了单一网络的性能,在地图视景验证中获得了23.9分的全景质量(pq)度量,输入分辨率为640x 900像素。在城市景观验证中,我们的方法在512x 1024像素的输入分辨率下获得了45.9分的pq值。此外,我们的方法对于独立的网络将预测时间减少了2倍。

在这里插入图片描述

贡献

为了得到最终一致的全景分割输出,使用高级启发式方法将语义分割和实例分割输出融合综上所述,我们从图像数据对街道场景理解的主要贡献是:
•用于全景分割的单一网络。
•分支机构间信息交换,以利用单一网络架构。
•改进了用于合并语义和实例分段预测的启发式方法。

方法

该网络由语义分割和实例分割两个分支组成,两个分支使用相同的特征抽取器。这些分支被联合训练,并在一次传递中输出它们的预测。

在我们的基线网络中,我们使用resnet-50特征抽取器,输出步长为8。resnet-50最初的步幅是32,但是在我们的网络中,它被缩小以允许更密集的语义分割预测。对于语义分割分支,我们遵循[5]在原始实现中,预测直接在特征提取器之后进行。

在这里插入图片描述

在这里插入图片描述

结果

在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
资源包主要包含以下内容: ASP项目源码:每个资源包中都包含完整的ASP项目源码,这些源码采用了经典的ASP技术开发,结构清晰、注释详细,帮助用户轻松理解整个项目的逻辑和实现方式。通过这些源码,用户可以学习到ASP的基本语法、服务器端脚本编写方法、数据库操作、用户权限管理等关键技术。 数据库设计文件:为了方便用户更好地理解系统的后台逻辑,每个项目中都附带了完整的数据库设计文件。这些文件通常包括数据库结构图、数据表设计文档,以及示例数据SQL脚本。用户可以通过这些文件快速搭建项目所需的数据库环境,并了解各个数据表之间的关系和作用。 详细的开发文档:每个资源包都附有详细的开发文档,文档内容包括项目背景介绍、功能模块说明、系统流程图、用户界面设计以及关键代码解析等。这些文档为用户提供了深入的学习材料,使得即便是从零开始的开发者也能逐步掌握项目开发的全过程。 项目演示与使用指南:为帮助用户更好地理解和使用这些ASP项目,每个资源包中都包含项目的演示文件和使用指南。演示文件通常以视频或图文形式展示项目的主要功能和操作流程,使用指南则详细说明了如何配置开发环境、部署项目以及常见问题的解决方法。 毕业设计参考:对于正在准备毕业设计的学生来说,这些资源包是绝佳的参考材料。每个项目不仅功能完善、结构清晰,还符合常见的毕业设计要求和标准。通过这些项目,学生可以学习到如何从零开始构建一个完整的Web系统,并积累丰富的项目经验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值