常见的数据降维python代码

数据降维是处理高维数据的一种重要技术,通过减少特征数量,保留主要信息,有助于数据可视化和减少计算复杂性。以下是几种常见的数据降维方法及其代码示例:

1. 主成分分析(PCA)

PCA 是一种线性降维方法,通过最大化方差的方式提取主要特征。

Python代码示例:

import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

# 生成示例数据
data = np.random.rand(100, 10)

# 创建PCA对象,降到2维
pca = PCA(n_components=2)
principal_components = pca.fit_transform(data)

# 绘制PCA结果
plt.scatter(principal_components[:, 0], principal_components[:, 1])
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('PCA Result')
plt.show()

2. 线性判别分析(LDA)

LDA 是一种监督学习方法,通过最大化类间方差与类内方差之比来进行降维。

Python代码示例:

import numpy as np
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
import matplotlib.pyplot as plt

# 生成示例数据
# 生成100个样本,每个样本有10个特征,分成2个类别
np.random.seed(0)
n_samples = 1000
n_features = 100
n_classes = 10

# 创建数据
data = np.random.randn(n_samples, n_features)
labels = np.random.randint(0, n_classes, n_samples)

# 为每个类别添加不同的偏移量,使其有一定的区分度
data[labels == 0] += 2
data[labels == 1] -= 2

# 创建LDA对象,降到2维
lda = LDA(n_components=2)
lda_components = lda.fit_transform(data, labels)


# 绘制LDA结果
plt.scatter(lda_components[:, 0], lda_components[:, 1], c=labels)
plt.xlabel('LDA Component 1')
plt.ylabel('LDA Component 2')
plt.title('LDA Result')
plt.show()

3. t-分布邻域嵌入(t-SNE)

t-SNE 是一种非线性降维方法,特别适用于高维数据的可视化,通过保持局部邻域结构将数据嵌入到低维空间。

Python代码示例:

import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt

# 生成示例数据
data = np.random.rand(100, 10)

# 创建t-SNE对象,降到2维
tsne = TSNE(n_components=2, perplexity=30, n_iter=300)
tsne_components = tsne.fit_transform(data)

# 绘制t-SNE结果
plt.scatter(tsne_components[:, 0], tsne_components[:, 1])
plt.xlabel('t-SNE Component 1')
plt.ylabel('t-SNE Component 2')
plt.title('t-SNE Result')
plt.show()

4. 统一流形近似与投影(UMAP)

UMAP 是一种非线性降维方法,擅长保持数据的全局和局部结构,并且计算速度较快。

pip install umap-learn

Python代码示例:

import numpy as np
import umap
import matplotlib.pyplot as plt

# 生成示例数据
data = np.random.rand(100, 10)

# 创建UMAP对象,降到2维
umap_reducer = umap.UMAP(n_components=2)
umap_components = umap_reducer.fit_transform(data)

# 绘制UMAP结果
plt.scatter(umap_components[:, 0], umap_components[:, 1])
plt.xlabel('UMAP Component 1')
plt.ylabel('UMAP Component 2')
plt.title('UMAP Result')
plt.show()

5. 多维尺度分析(MDS)

MDS 是一种非线性降维方法,通过保持样本间距离关系,将高维数据嵌入到低维空间中。

Python代码示例:

import numpy as np
from sklearn.manifold import MDS
import matplotlib.pyplot as plt

# 生成示例数据
data = np.random.rand(100, 10)

# 创建MDS对象,降到2维
mds = MDS(n_components=2, dissimilarity='euclidean')
mds_components = mds.fit_transform(data)

# 绘制MDS结果
plt.scatter(mds_components[:, 0], mds_components[:, 1])
plt.xlabel('MDS Component 1')
plt.ylabel('MDS Component 2')
plt.title('MDS Result')
plt.show()

6. 非负矩阵分解(NMF)

NMF 是一种非线性降维方法,通过将数据矩阵分解为两个非负矩阵的乘积,适用于非负数据。

Python代码示例:

import numpy as np
from sklearn.decomposition import NMF
import matplotlib.pyplot as plt

# 生成示例数据
data = np.abs(np.random.rand(100, 10))

# 创建NMF对象,降到2维
nmf = NMF(n_components=2, init='random', random_state=0)
nmf_components = nmf.fit_transform(data)

# 绘制NMF结果
plt.scatter(nmf_components[:, 0], nmf_components[:, 1])
plt.xlabel('NMF Component 1')
plt.ylabel('NMF Component 2')
plt.title('NMF Result')
plt.show()

总结

方法类型特点适用场景
PCA线性保持全局方差最大数据预处理、特征提取、可视化
LDA线性监督学习,最大化类间差异分类问题的特征提取
t-SNE非线性保持局部结构高维数据可视化
UMAP非线性保持全局和局部结构,速度快大规模高维数据可视化
MDS非线性保持样本间距离数据可视化、探索性分析
NMF非线性保持数据非负性,产生稀疏表示图像处理、文本挖掘

选择合适的降维方法取决于数据的特性、分析目标和计算资源。

  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值