AF3 mse_loss函数解读

AlphaFold3的mse_loss函数计算的是 基于扩散模型的 MSE 损失,用于 AlphaFold3 训练中的结构预测任务。
它的核心思想是:

  1. 计算 MSE(均方误差)损失,衡量预测原子坐标 (pred_atoms) 与真实原子坐标 (gt_atoms) 的差距。
  2. 进行刚性对齐,避免不必要的旋转/平移影响损失计算。
  3. 引入时间步 (timesteps) 进行加权,根据扩散噪声水平调整 MSE 损失。

源代码:

def mse_loss(
        pred_atoms: Tensor,  # (bs * samples_per_trunk, n_atoms, 3)
        gt_atoms: Tensor,  # (bs * samples_per_trunk, n_atoms, 3)
        timesteps: Tensor,  # (bs * samples_per_trunk, 1)
        weights: Tensor,  # (bs, n_atoms)
        mask: Optional[Tensor] = None,  # (bs, n_atoms)
        sd_data: float = 16.0,  # Standard deviation of the data
        epsilon: Optional[float] = 1e-5,
        **kwargs
) -> Tensor:  # (bs,)
    """Diffusion loss that scales the MSE and LDDT losses by the noise level (timestep)."""

    # Convert to Vec3Array
    pred_atoms = Vec3Array.from_array(pred_atoms)
    gt_atoms = Vec3Array.from_array(gt_atoms)

    # Align the gt_atoms to pred_atoms
    aligned_gt_atoms = weighted_rigid_align(x=gt_atoms, x_gt=pred_atoms, weights=weights, mask=mask)

    # MSE loss
    mse = mean_squared_error(pred_atoms, aligned_gt_atoms, weights, mask)

    # Scale by (t**2 + σ**2) / (t * σ)**2
    scaling_factor = (timesteps ** 2 + sd_data ** 2) / ((timesteps * sd_data) ** 2 + epsilon)
    scaled_mse = scaling_factor.squeeze(-1) * mse  # (bs,)

    # Average over batch dimension
    return torch.mean(scaled_mse)  # scaled_mse

1. 函数参数解析

def mse_loss(
    pred_atoms: Tensor,  # (bs * samples_per_trunk, n_atoms, 3)
    gt_atoms: Tensor,  # (bs * samples_per_trunk, n_atoms, 3)
    timesteps: Tensor,  # (bs * samples_per_trunk, 1)
    weights: Tensor,  # (bs, n_atoms)
    mask: Optional[Tensor] = None,  # (bs, n_atoms)
    sd_data: float = 16.0,  # Standard deviation of the data
    epsilon: Optional[float] = 1e-5,
    **kwargs
) -> T
.action_dim * self.num_agents)) critic_loss = F.mse_loss(q_expected, q_target) self.critic_optimizer.zero_grad() critic_loss.backward() nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1) self.critic_optimizer.step好的,这是一个很有趣的问题。在使用PyQt5开发上位机应用程序时,可以使用() # 更新 Actor 网络 actions_pred = [] for i in range(self.num_agents): actions_pred.append(self.actorPython的Socket模块与ESP32进行无线通信。具体步骤如下: 1. ESP32需要连接到一个Wi-Fi网络,这可以通过编写适当的代码来实现。 2. 在PyQt5应用程序中,使用_local[i](states[:, i])) actions_pred = torch.cat(actions_pred, dim=1) actor_loss = -self.critic_localSocket模块创建一个TCP客户端套接字。可以使用ESP32的IP地址和端口号作为连接参数。(states.view(-1, self.state_dim * self.num_agents), actions_pred).mean() self.actor_optimizer[0].zero_grad() 例如: ``` import socket HOST = '192.168.1.100' # ESP32的IP地址 PORT = actor_loss.backward() nn.utils.clip_grad_norm_(self.actor_local[0].parameters(), 1) self.actor_optimizer[05000 # ESP32使用的端口号 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((HOST,].step() # 软更新 Critic 和 Actor 网络 self.soft_update(self.critic_local, self.critic_target, PORT)) ``` 3. 定义一个函数来发送数据到ESP32。这可以通过调用Socket对象的`send()`方法 TAU) self.soft_update(self.actor_local, self.actor_target, TAU) def soft_update(self, local_model, target来实现。例如: ``` def send_data(data): s.send(data.encode()) ``` 4. 同样定义一个函数来_model, tau): for local_param, target_param in zip(local_model.parameters(), target_model.parameters()): target_param.data.copy_(tau接收ESP32发送的数据。可以使用Socket对象的`recv()`方法来实现。例如: ``` def receive_data(): * local_param.data + (1 - tau) * target_param.data) ``` 最后,需要定义训练函数和测试函数: data = s.recv(1024) return data.decode() ``` 5. 在PyQt5应用程序中,可以使用```python def train(n_episodes=2000, max_t=1000, print_every=100): scores_deque = deque(max信号槽机制来处理发送和接收数据的操作。例如: ``` from PyQt5.QtCore import QObject, pyqtlen=print_every) scores = [] for i_episode in range(1, n_episodes + 1): env_info = envSignal class Communication(QObject): data_received = pyqtSignal(str) def __init__(self, parent=None): super().__init.reset(train_mode=True)[brain_name] state = env_info.vector_observations agent.noise.reset() score = np.zeros__(parent) def send_data(self, data): s.send(data.encode()) def receive_data(self): data = s.recv((num_agents) for t in range(max_t): action = agent.act(state) env_info = env.step(action)[brain_name1024) self.data_received.emit(data.decode()) ``` 这里我们定义了一个名为Communication的QObject子类,其中包] next_state = env_info.vector_observations reward = env_info.rewards done = env_info.local_done 含了两个函数send_data()和receive_data(),以及一个data_received信号。当ESP32发送数据到上位 agent.step(state, action, reward, next_state, done) state = next_state score += reward if np.any机时,我们可以通过data_received信号触发槽函数来处理接收到的数据。 以上就是一个简单的(done): break scores_deque.append(np.max(score)) scores.append(np.max(score)) print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_deque)), end="") if i_episode % print_every == 0PyQt5上位机与ESP32进行无线通信的步骤,希望能对你有所帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值