OpenRLHF:大规模分布式RLHF训练系统介绍

65df8611ddb21337fd2f4fae07a49c61.png

主题

大规模分布式RLHF训练系统介绍

时间

2024.9.1 10:30-11:30 周日

入群

6d448e00fe44d23fe91fdb39eb2e2a53.png

大纲

1. RLHF背景知识

2. RLHF性能分析

3. 基于DeepSpeed的TRLX/TRL/LMF

4. 基于Megatron的RLHF

5. 基于Ray和vLLM的OpenRLHF

6. RLHF调参细节优化

引言

随着大规模语言模型(LLMs)通过扩展定律不断增长,基于人类反馈的强化学习(RLHF)因其卓越的性能而受到广泛关注。然而,与单一模型的预训练或微调不同,将基于人类反馈的强化学习(RLHF)扩展到训练大型语言模型时,会在协调四个模型的过程中面临挑战。我们推出了OpenRLHF,一个支持70B以上模型的大规模RLHF训练的开源框架。与现有的将四个模型切分后放在相同GPU上的TRLX/TRL/LMF等框架不同,OpenRLHF重新设计了模型调度方案,利用Ray、vLLM和DeepSpeed优化资源利用率和训练性能。和基于Megatron-LM的RLHF方案相比,OpenRLHF可以无缝集成Hugging Face models和datasets,确保了用户友好性和代码的简洁性和易修改性,提供了开箱即用的解决方案。

项目:https://github.com/OpenRLHF/OpenRLHF

简介

d712daf3d952346601bfb654ad2e65e6.jpeg

初七现在为某核弹厂高级工程师,主要关注方向为RLHF/LLM以及MLSys。早年主要做 MARL 相关研究,为 MARL 框架 pymarl2 的作者,现在业界负责某知名大模型分布式训练/推理框架的模型和系统联合优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值